Customer Application

21 January 2019
The Lake is Calm and Still

Embedded in a stunning, idyllic mountain setting, Lake Lucerne provides a traditional atmosphere with its fjord-like straights and winding inlets. Right in the middle of this beauty is a daily shipping route bearing tourists between Lucerne and other popular travel destinations, like Weggis and Bürgenstock. While it may sound less than idyllic, it actually boasts an intriguing eco-friendly twist. The MS Bürgenstock, the new motorized vessel belonging to the Lake Lucerne Navigation Company (SGV), sports a quiet and fuel-efficient hybrid drive. Aventics, a specialist of hybrid drive controls in ships headquartered in Laatzen, ensures optimum control between the electric motors and diesel engines. Several years ago, Aventics expanded their solutions by using the WAGO-I/O-SYSTEM 750.

Two years of design and construction came to fruition at the end of May: SGV’s new shuttle, the MS Bürgenstock, embarked on her maiden voyage on the lake, where she navigates the Lucerne-Kehrsiten-Bürgenstock route daily – from early morning to after midnight.

Visitors during the initial launch, who expected the typical clatter of diesel engines, were surprised by near silence instead. The catamaran, designed as a shuttle by Shiptec AG, was specifically developed to cruise the Lucerne basin in electric mode, supplied by batteries – the diesel engines are required for only half of the route as determined by the captain. According to Rudolf Stadelmann, CEO at Shiptec, “The MS Bürgenstock is a modern, innovative, and ecologically sound ‘bridge’ between Lucerne and Bürgenstock resort.” It is, however, also a fast bridge, as the ship travels at up to 35 kilometers per hour and reaches its destination in a mere 23 minutes.. Martin Einsiedler, head of Ship Design and Engineering at Shiptec, explains that the propulsion systems include two Scania diesel engines with an output of 552 kW each, and two permanently excited synchronous electric motors from Siemens, each with an output of 180 kW. “Basically, we use the diesel engines for travel outside of the harbor areas,” states Einsiedler. “The electric motors function as generators here to supply power for the ship and the system batteries. These batteries, in turn, provide the power for the electric drive and the onboard network in the Lucerne basin. Approximately 50% of the total travel time uses only the electric drive.”

The hybrid engine in the MS Bürgenstock protects the Swiss environment – with an innovative
drive control from Aventics.

All data in the propulsion system is recorded, evaluated and forwarded in the WAGO-I/O-SYSTEM – our controller then works in principle like a normal telecontrol device that exchanges information with the WAGO system. An experienced team that functions well together.

While designing the drive technology, Shiptec determined the most economically advantageous variant. Using similarly sized ships, comparable travel profiles were developed, and the requirements and consumption by the propulsion system and onboard networks were recorded. Based on this data, they decided on a parallel hybrid power and propulsion system. Martin Einsiedler, head of Ship Design and Engineering at Shiptec, explains that the propulsion systems include two Scania diesel engines with an output of 552 kW each, and two permanently excited synchronous electric motors from Siemens, each with an output of 180 kW. “Basically, we use the diesel engines for travel outside of the harbor areas,” states Einsiedler. “The electric motors function as generators here to supply power for the ship and the system batteries. These batteries, in turn, provide the power for the electric drive and the onboard network in the Lucerne basin. The all-electric system is used for about 50 percent of the entire trip.

WDE_1802_Variante-Parallel-Hybrid-SF55_2000x1500.jpg

The propulsion system in the MS Bürgenstock includes two Scania diesel engines, each with an output of 552 kW, and two permanently excited synchronous electric motors from Siemens, each with an output of 180 kW.

Complex System, Reliable Solution

The demands on the drive controls are quite high in order to smoothly perform the complex processes in this hybrid propulsion and energy management system, while guaranteeing fast, reliable transitions between the two power sources. As explained by Marius Mudroch from Aventics, “The complications in hybrid technology lie in the fact that we have two types of drives that differ in their dynamics and behaviors. The captain always has the option of selecting between the drives or cruising with the combined system, depending on the travel profile,” according to Mudroch, who has specialized in the development of hybrid controllers in ship automation during a decade at Aventics; he supervised the Swiss project. The different travel profiles are stored in the controller; in the case of the Bürgenstock, this is a CAN controller from the WAGO-I/O-SYSTEM 750.

“Our own controllers have a limited number of digital and analog inputs and outputs. Therefore, on larger projects with a lot of interfaces – like a hybrid propulsion system – we have used the WAGO 750 Series several years now,” states Mudroch. These controllers are specifically prepared for Aventics devices and are programmed so that the modules can be flexibly combined. “The true practicality of the 750 Series is that we can determine the number of modules ourselves; in the case of our hybrid engine, there are ten total. The WAGO CANopen Controller (750-837) was selected as the head, which enables CODESYS programming.” Another advantages lies in its fast boot time: when the system is switched on, the controller is operational within a few seconds. “We connect our controller and WAGO’s using the CAN bus, and everything runs.” The functions in the hybrid system are programmed using the WAGO-I/O-PRO software tool in the WAGO controller, which is based on CODESYS 2.3. “Our controller then works in principle like a normal telecontrol device that exchanges information with the WAGO system,” explains Mudroch. All characteristic curve switchover operations are programmed in the 750 Series I/O System, which is where the data is evaluated and forwarded. For example, if the captain selects the electric motor, then the controller prepares the hybrid propulsion system for electric mode. Depending on the demands, the electric motor can then be used as an additional thruster in boost operation, or as a wave generator. In addition, the controller provides analog values, like the diesel engine torque or the lever position. Due to variables stored in the memory, it can be both programmed and also parameterized – parameters represent, for example, when delay times or other functions should be used that must be switched on or off.

WDE_1802_20180326_094109_2000x1500.jpg

Precision was necessary for the installation of the modular drive unit, which weighs several tonnes. In May, 2018, the MS Bürgenstock began using its hybrid propulsion system to cruise Lake Lucerne.

Our controller and the one from WAGO interact well together.

Marius Mudroch, Aventics

Hybrid Propulsion Becomes More Innovative

Two different propulsion sources, more signals – Marius Mudroch points out that the number of potential faults also correspondingly increases. Faults that occur must be treated by the controller so that the ship reacts according to the demands, particularly because it is not immediately obvious to the captain of a hybrid which part of the drive has generated the fault message.” A step chain is generated for each change of mode. After each step, the controller verifies whether it was executed completely. “The regulations from the classification societies determine how the ship should behave in the case of a fault,” explains Mudroch. On a seagoing ship, the last running state during a fault should preferably be maintained so that the captain can decide whether to continue or switch the engine to emergency stop. “Inland waterway ships like the Bürgenstock quickly switch the engine off during a fault, because they can make it to shore relatively quickly,” continues Mudroch.

Mudroch estimates it took around a week to develop the controller, “I have my philosophy and my previous experience to guide how I implement characteristic curve switchover operations. However, the demands placed on hybrid propulsion systems for ships have changed a lot in the past few years.” While the hybrid drives were initially developed as redundant drives in his early projects to forestall failures, the electric drives of today assume a more active part in the systems. The Bürgenstock is actually not the first ship with an electric drive to cruise Lake Lucerne – in 2017, its predecessor model, the MS Diamant, was commissioned by the SGV. Due to its light weight, optimized hull shape, and the hybrid drive, this passenger and event ship saves around 20 percent of the energy required for a comparable, conventional, diesel-driven vessel. “Although the MS Bürgenstock is equipped with similar components to its predecessor, we got a bit more innovative,” states Mudroch. While the Diamant is equipped with an auxiliary diesel for covering high onboard network loads – specifically in the case of large events – this was omitted on the Bürgenstock to reduce noise and exhaust emissions, and to save space. The principle of the drive controller also represented another development, as the Aventics engineer emphasizes, “With the predecessor ship, the engine had to be shifted into neutral in order to switch between propulsion options. This switchover could take a few seconds.” In the Bürgenstock, the diesel switches over to the electric drive while running, once the captain has given the command. “Passengers feel neither the switchover nor the recoupling nor shaking of any kind – everything is compensated for on the drive side.” For Mudroch, they have not reached the end of development – not be a long shot. “As long as I can expand my own controller via programs, inputs, and outputs on WAGO’s controller, then there are still plenty of possibilities.” This also applies to a future digital data transfer between the controller and the cloud, “We don’t yet have remote access to the system, which is probably because the controllers we use are not cloud-capable. However, if the customer specifies this request, then a solution using IoT controllers from WAGO would surely be one option.”

Text:
Lars Kühn | WAGO
Alberto Alonso Malo | WAGO

Photo: Roger Gruetter | Shiptec AG | WAGO

WDE_1802_shuttleschiff-25_Copyright_RogerGruetter_2000x1500.jpg

The modern MS Bürgenstock catamaran carries tourists between Lucerne-Kehrsiten-Bürgenstock throughout the year (the eponymous Bürgenstock resort is visible in the background)

Our partnership with WAGO has strengthened over time. For us, the fast and flexible support is a positive; we also benefit from using components from a single source.

Marius Mudroch, Aventics

There is a lot of WAGO in the MS Bürgenstock

The company from Laatzen relies on many WAGO products, in addition to the controller components, that Aventics uses in the Bürgenstock’s hybrid controls. “For example, we currently use Series 870 rail-mount terminal blocks; for future projects, we want to install TOPJOB® S,” states Mudroch. In addition, the company is using a 857 Series Converter, in order to transform input signals into suitable frequency signals. “WAGO addressed our specific requirements individually and quickly – we received firmware in a format that no one else has.” For example, in ships with variable pitch propellers, one needs not only linear characteristic curves, but also buckling curves that have one or more support points. This requirement was programmed into the converter. The interface is the same as for the WAGO-I/O-SYSTEM 750, which is incredibly practical. “Our partnership with WAGO has strengthened over time. For us, the fast and flexible support is a positive; we also benefit from using components from a single source,” explains Mudroch.

About Aventics

Aventics is regarded as a leading manufacturer of pneumatic components and systems. The pneumatic specialists offer products and services for industrial automation and within the food and beverage, life sciences and energy sectors. In addition, the company develops solutions for commercial vehicles, marine and railway technologies.

Aventics has become a pioneer in user-centric, environmentally friendly solutions by integrating electronics, using modern materials, and concentrating on machine safety and industry 4.0. With this expansion into digitization, Aventics is positioning itself for the future.

Aventics counts on 150 years of experience in pneumatics, and employs over 2,000 employees worldwide. From production locations in Germany, France, Hungary, the USA and China, Aventics supplies its products through direct sales and vendors to more than 100 countries. www.aventics.com

WAGO at Work

Further Customer Applications from the Area of Propulsion Control

WAGO has completed many interesting projects in the marine and offshore sectors. Learn more about the most recent ones here.

Zero Emissions, Doubly Safeguarded

Supported by the Arctic University of Norway in Narvik (UiT) and funded by the Norwegian government, the shipbuilders at Grovfjord Mekaniske Verksted (GMV) have developed an energy management system (EMS) for a zero-emission ship with an all-electric drive. This visionary project was realized with the help of WAGO, which contributed to the central automation.

Marine_Offshore_WDE_1802_lav1_2000x1500.jpg

Safe Exhaust Gas Cleaning for Ships

Retrofittable exhaust gas post-treatment systems allow ships to meet the exhaust gas standards – with WAGO technology.

marine_schiff_capri_luxusyacht_2000x1500.jpg

Recommended Reading

More Marine Applications

Whether Maritime 4.0, propulsion control or tank ballast and cargo management – WAGO offers solutions for every maritime challenge.

Tank Ballast and Cargo

Maintaining stability in rough seas is vital for freighters. Reliable tank ballast systems are key to this – with solutions from WAGO.

marine_containerschiffe_oben_1_2000x1500.jpg

Deck Handling and Cranes

Maintenance-free and safe solutions to keep tugboats and cranes ready for action at any time. WAGO’s solutions prove their strength under the most demanding conditions.

marine_schlepper_seil_2000x1500.jpg

Alarm and Monitoring

Collect, condition and visualize data, and, when necessary, issue alarms: Alarm and monitoring systems with WAGO technology get the job done.

marine_steuerraum_1_gettyimages-169263598_2000x1500.jpg

Cabin Automation

WAGO’s cost-effective, reliable connection solutions form the electrical basis for onboard amenities.

marine_kreuzfahrtschiff_1_2000x1500.jpg

Also of interest

WAGO in Other Industries

WAGO’s automation and electrical interconnection technologies are not only represented in the marine and offshore sectors. Learn what solutions WAGO offers in other industries.

Process Engineering

Whether energy management or explosion protection, from Process 4.0 to cybersecurity, WAGO continuously develops solutions for users and planners.

brancheneinstiege_prozess_2000x1500.jpg

Building Technology

Whether lighting and room management or solutions for heating, ventilation or air conditioning, WAGO is an innovative partner with the right products to save you time, costs and energy.

BUILDING_2000x1500.jpg