WAGO-I/O-SYSTEM 750
MP-Bus-Master-Modul, 750-643
Connection of an MP-Bus Actuator

Version 1.0.1
© 2019 by WAGO Kontakttechnik GmbH & Co. KG
All rights reserved.

WAGO Kontakttechnik GmbH & Co. KG
Hansastraße 27
D-32423 Minden
Tel.: +49 (0) 571/8 87 – 0
Fax: +49 (0) 571/8 87 – 1 69
E-Mail: info@wago.com
Web: http://www.wago.com

Technical Support
Tel.: +49 (0) 571/8 87 – 4 45 55
Fax: +49 (0) 571/8 87 – 84 45 55
E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the accuracy and completeness of this documentation. However, as errors can never be fully excluded, we always appreciate any information or suggestions for improving the documentation.

We wish to point out that the software and hardware terms, as well as the trademarks of companies used and/or mentioned in the present document are generally protected by trademark or patent.
Notes about this Documentation
Copyright

This documentation, including all figures and illustrations contained therein, is subject to copyright protection. Any use of this documentation that infringes upon the copyright provisions stipulated herein is prohibited. Reproduction, translation, electronic and phototechnical filing/archiving (e.g., photocopying), as well as any amendments require the written consent of WAGO Kontakttechnik GmbH & Co. KG, Minden, Germany. Non-observance will entail the right of claims for damages.

WAGO is a registered trademark of WAGO Verwaltungsgesellschaft mbH.

Number Notation

Table 1: Number Notation

<table>
<thead>
<tr>
<th>Number code</th>
<th>Example</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>100</td>
<td>Normal notation</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0x64</td>
<td>C notation</td>
</tr>
<tr>
<td>Binary</td>
<td>'100'</td>
<td>In quotation marks, nibble</td>
</tr>
<tr>
<td></td>
<td>'0110.0100'</td>
<td>separated with dots(.)</td>
</tr>
</tbody>
</table>

Font Conventions

Table 2: Font Conventions

<table>
<thead>
<tr>
<th>Font type</th>
<th>Indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>italic</td>
<td>Names of paths and data files are marked in italic-type.</td>
</tr>
<tr>
<td></td>
<td>e.g.: <code>C:\Programme\WAGO-I/O-CHECK</code></td>
</tr>
<tr>
<td>Menu</td>
<td>Menu items are marked in bold letters.</td>
</tr>
<tr>
<td></td>
<td>e.g.: Save</td>
</tr>
<tr>
<td>></td>
<td>A greater-than sign between two names means the selection of a menu item</td>
</tr>
<tr>
<td></td>
<td>from a menu.</td>
</tr>
<tr>
<td></td>
<td>e.g.: File > New</td>
</tr>
<tr>
<td>Input</td>
<td>Designation of input or optional fields are marked in bold letters,</td>
</tr>
<tr>
<td></td>
<td>e.g.: Start of measurement range</td>
</tr>
<tr>
<td>"Value"</td>
<td>Input or selective values are marked in inverted commas.</td>
</tr>
<tr>
<td></td>
<td>e.g.: Enter the value “4 mA” under Start of measurement range</td>
</tr>
<tr>
<td>[Button]</td>
<td>Pushbuttons in dialog boxes are marked with bold letters in square</td>
</tr>
<tr>
<td></td>
<td>brackets.</td>
</tr>
<tr>
<td></td>
<td>e.g.: [Input]</td>
</tr>
<tr>
<td>[Key]</td>
<td>Keys are marked with bold letters in square brackets.</td>
</tr>
<tr>
<td></td>
<td>e.g.: [F5]</td>
</tr>
</tbody>
</table>
Symbols

DANGER

Personal Injury!
Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

DANGER

Personal Injury Caused by Electric Current!
Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Personal Injury!
Indicates a moderate-risk, potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

Personal Injury!
Indicates a low-risk, potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE

Damage to Property!
Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

NOTICE

Damage to Property Caused by Electrostatic Discharge (ESD)!
Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

Note

Important Note!
Indicates a potential malfunction which, if not avoided, however, will not result in damage to property.
Information

Additional Information:
Refers to additional information which is not an integral part of this documentation (e.g., the Internet).

Legal Bases
Subject to Change

WAGO Kontakttechnik GmbH & Co. KG reserves the right to make any alterations or modifications that serve to increase the efficiency of technical progress. WAGO Kontakttechnik GmbH & Co. KG owns all rights arising from granting patents or from the legal protection of utility patents. Third-party products are always mentioned without any reference to patent rights. Thus, the existence of such rights cannot be excluded.

Personnel Qualification

The use of the product described in this document is exclusively geared to specialists having qualifications in PLC programming, electrical specialists or persons instructed by electrical specialists who are also familiar with the appropriate current standards.

Moreover, the persons cited here must also be familiar with all of the products cited in this document, along with the operating instructions. They must also be capable of correctly predicting any hazards which may not arise until the products are combined.

WAGO Kontakttechnik GmbH & Co. KG assumes no liability resulting from improper action and damage to WAGO products and third-party products due to non-observance of the information contained in this document.
Limitation of Liability

This documentation describes the use of various hardware and software components in specific example applications. The components may represent products or parts of products from different manufacturers. The respective operating instructions from the manufacturers apply exclusively with regard to intended and safe use of the products. The manufacturers of the respective products are solely responsible for the contents of these instructions.

The sample applications described in this documentation represent concepts, that is, technically feasible application. Whether these concepts can actually be implemented depends on various boundary conditions. For example, different versions of the hardware or software components can require different handling than that described here. Therefore, the descriptions contained in this documentation do not form the basis for assertion of a certain product characteristic.

Responsibility for safe use of a specific software or hardware configuration lies with the party that produces or operates the configuration. This also applies when one of the concepts described in this document was used for implementation of the configuration.

WAGO Kontakttechnik GmbH & Co. KG is not liable for any actual implementation of the concepts.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>8</td>
</tr>
<tr>
<td>Used material</td>
<td>8</td>
</tr>
<tr>
<td>Libraries</td>
<td>8</td>
</tr>
<tr>
<td>Devices</td>
<td>8</td>
</tr>
<tr>
<td>Tools</td>
<td>8</td>
</tr>
<tr>
<td>Setup</td>
<td>9</td>
</tr>
<tr>
<td>Control of an MP-Bus Actuator</td>
<td>10</td>
</tr>
<tr>
<td>Task</td>
<td>10</td>
</tr>
<tr>
<td>Programming</td>
<td>11</td>
</tr>
<tr>
<td>Visualization Interface</td>
<td>14</td>
</tr>
</tbody>
</table>

Version 1.0.1
1 Description

This application note describes how a WAGO fieldbus controller builds communication to the MP-Bus actuators using the 750-643 MP-Bus Master Module.

The sample program shows not only the option of addressing the MP-Bus actuators, but also the cyclical communication with actuators already addressed.

2 Used material

2.1 Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WagoAppMP_Bus</td>
<td>MP-Bus Bibliothek</td>
</tr>
</tbody>
</table>

2.2 Devices

<table>
<thead>
<tr>
<th>Provider</th>
<th>Quantity</th>
<th>Description</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAGO</td>
<td>1</td>
<td>Controller PFC100; 2 x ETHERNET</td>
<td>750-8101</td>
</tr>
<tr>
<td>WAGO</td>
<td>1</td>
<td>MP-Bus-Master</td>
<td>750-643</td>
</tr>
<tr>
<td>WAGO</td>
<td>1</td>
<td>Endmodul</td>
<td>750-600</td>
</tr>
<tr>
<td>BELIMO</td>
<td>1</td>
<td>MP-Bus Stellantrieb</td>
<td>SM24A-MP</td>
</tr>
</tbody>
</table>

2.3 Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>e!COCKPIT; Workstation License</td>
<td>2759-101/1110-2002</td>
</tr>
</tbody>
</table>
3 Setup

Fig. 1: Connection diagram

Note

Communication Cable!

The communication cable, which is shown in Fig. 1, is an alternative way to establish a connection between the PC and the WAGO controller.
4 Control of an MP-Bus Actuator

NOTICE

Installation of Sample Projects for *e!COCKPIT*

Sample programs can be called up from the *e!COCKPIT* Backstage view by clicking the **Updates & Add-ons** button in the navigation bar.

4.1 Task

An actuator with MP-Bus interface is to be controlled with the WAGO-I/O-SYSTEM. For this, the actuator is connected to the WAGO-I/O-SYSTEM, using an MP-Bus master module (see illustration 1). A PT1000 resistor is also connected to the actuator for the additional evaluation of the channel temperature, for example. How to program the application is described briefly below.
4.2 Programming

```plaintext
1 PROGRAM PLC_PRG
2 VAR
3 //Function block for communicating with the WAGO MP-Bus module 750-643
4 MPBusMaster : FbMpbusMaster;
5 bModuleNumber : BYTE := 1;
6 sStatusMaster : STRING;
7

Fig. 3: Communication with MP-Bus master module
```

Figure 2 shows the basic structure for the programming of an MP-Bus application. Prerequisites for the communication with the MP-Bus actuator are a 750-643 MP-Bus Master Module and the `FbMpbusMaster` function block.

At the `FbMpBusMaster` function block, the Description of the MP-Bus Master Module, which can be found and edited in the device structure, must be indicated at the “I_Port” input.

```

Fig. 4: Device structure - e!COCKPIT
```
The module index of the connected MP-Bus module must be indicated at the "bPortMpBus" input (first MP-Bus module => 1, second MP-Bus module => 2, etc.). The last occurred error message is displayed at the output "sStatus" as a string variable.

Note

Master function block!
For each MP-Bus master module, the **FbMpBusMaster** function block may be addressed only once. The assignment of the MP-Bus function blocks to the corresponding MP-Bus master function block is performed using the input "bPortMpBus".

Using the **FbMpBusAddressing** function block, a unique MP-Bus address can be assigned to the connected MP-Bus actuator. Addressing can be performed in two different ways:

1. **Addressing the MP-Bus actuator by pressing the service pin**
2. **Addressing the MP-Bus actuator by entering the serial number**

To address the MP-Bus actuator via the service pin, the "xSet" input must be set to TRUE, and subsequently the service pin on the MP-Bus actuator must be actuated. Then, the actuator is assigned the address of the "bAddress" variable.

When addressing the MP-Bus actuator using the serial number, the actuator serial number is entered at the "typINSerialNo" structure variable. Then, the actuator can be addressed via the "xSet" input.
Addressing via visualization!
Addressing the MP-Bus actuator is facilitated by the visualization interface described in chapter 5.

![Diagram showing the FbMpBusDamperAndLinearActuator function block instance for controlling SM24A-MP rotary damper actuator.]

The `FbMpBusDamperAndLinearActuator` function block instance is used for scanning and controlling the SM24A-MP rotary damper actuator.

The send and scan process is initiated via the "xEnable" input. Subsequently, the communication with the actuator is cyclical and depends on the "tCycleTime" parameter.

The set point value of the angle of rotation of the damper actuator is preset by the "rPosition" input and sent to the actuator. The current actual position of the actuator is sent back by the actuator and displayed at the "rOutPosition" output.

Using the "bSensorType" input, the sensor type is selected, PT1000 in our example. The resistance value measured by the actuator is then displayed at the "wSensorValue" output. Via the `Fu_PT1000` function, the measured resistance value is converted to a temperature value.
5 Visualization Interface

Fig. 7: Visualization interface for commissioning an MP-Bus actuator.

Addressing as well as communication with the damper drive is graphically shown in the visualization interface.

For addressing the actuator, the actuator serial number can be entered in the white fields to the left side. The visualization also offers the option to start addressing the actuator using the service pin.

The right section of the visualization interface provides space for the parameter setting of the communication with the damper actuator. In addition, the values acquired from the damper actuator are visually represented.