WAGO-I/O-SYSTEM 750
ETHERNET TCP/IP-Controller
750-843
SPS - Programmierbarer Feldbuscontroller
ETHERNET TCP/IP

Version 1.2.0
Es wurden alle erdenklichen Maßnahmen getroffen, um die Richtigkeit und Vollständigkeit der vorliegenden Dokumentation zu gewährleisten. Da sich Fehler, trotz aller Sorgfalt, nie vollständig vermeiden lassen, sind wir für Hinweise und Anregungen jederzeit dankbar.

E-Mail: documentation@wago.com

Wir weisen darauf hin, dass die im Handbuch verwendeten Soft- und Hardware-Bezeichnungen und Markennamen der jeweiligen Firmen im Allgemeinen einem Warenzeichenschutz, Markenzeichenschutz oder patentrechtlichem Schutz unterliegen.
Inhaltsverzeichnis

1 **Hinweise zu dieser Dokumentation** ... 9
 1.1 Gültigkeitsbereich .. 9
 1.2 Urheberschutz ... 9
 1.3 Symbole .. 10
 1.4 Darstellung der Zahlensysteme ... 11
 1.5 Schriftkonventionen .. 11

2 **Wichtige Erläuterungen** .. 12
 2.1 Rechtliche Grundlagen ... 12
 2.1.1 Änderungsvorbehalt ... 12
 2.1.2 Personalqualifikation .. 12
 2.1.3 Bestimmungsgemäße Verwendung des WAGO-I/O-SYSTEMs 750 12
 2.1.4 Technischer Zustand der Geräte .. 13
 2.2 Sicherheitshinweise .. 14
 2.3 Spezielle Einsatzbestimmungen für ETHERNET-Geräte 16

3 **Systembeschreibung** ... 17
 3.1 Fertigungsnummer .. 18
 3.2 Hardware-Adresse (MAC-ID) ... 18
 3.3 Komponenten-Update ... 19
 3.4 Lagerung, Kommissionierung und Transport 19
 3.5 Aufbauregeln und Normen .. 20
 3.6 Spannungsversorgung .. 21
 3.6.1 Potentialtrennung .. 21
 3.6.2 Systemversorgung ... 22
 3.6.2.1 Anschluss .. 22
 3.6.2.2 Auslegung .. 23
 3.6.3 Feldversorgung .. 26
 3.6.3.1 Anschluss .. 26
 3.6.3.2 Absicherung ... 28
 3.6.4 Ergänzende Einspeisevorschriften .. 31
 3.6.5 Versorgungsbeispiel ... 32
 3.6.6 Netzgeräte ... 34
 3.7 Erdung ... 35
 3.7.1 Erdung der Tragschiene ... 35
 3.7.1.1 Rahmenschluß .. 35
 3.7.1.2 Isolierter Aufbau .. 35
 3.7.2 Funktionserde .. 36
 3.8 Schirmung ... 37
 3.8.1 Allgemein ... 37
 3.8.2 Busleitungen .. 37
 3.8.3 Signalleitungen ... 37
 3.8.4 WAGO-Schirm-Anschlusssystem .. 38

4 **Gerätebeschreibung** ... 39
 4.1 Ansicht .. 41
 4.2 Anschlüsse .. 43
 4.2.1 Geräteeinspeisung ... 43
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2</td>
<td>Feldbusanschluss</td>
</tr>
<tr>
<td>4.3</td>
<td>Anzeigelemente</td>
</tr>
<tr>
<td>4.4</td>
<td>Bedienteile</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Service-Schnittstelle</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Betriebsartenschalter</td>
</tr>
<tr>
<td>4.5</td>
<td>Technische Daten</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Gerätedaten</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Systemdaten</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Versorgung</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Feldbus MODBUS/TCP</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Zubehör</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Anschlussstechnik</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Klimatische Umweltbedingungen</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Mechanische Belastbarkeit gem. IEC 61131-2</td>
</tr>
<tr>
<td>4.6</td>
<td>Zulassungen</td>
</tr>
<tr>
<td>4.7</td>
<td>Normen und Richtlinien</td>
</tr>
<tr>
<td>5</td>
<td>Montieren</td>
</tr>
<tr>
<td>5.1</td>
<td>Einbaulage</td>
</tr>
<tr>
<td>5.2</td>
<td>Gesamtaufbau</td>
</tr>
<tr>
<td>5.3</td>
<td>Montage auf Tragplatten</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Tragplatten</td>
</tr>
<tr>
<td>5.3.2</td>
<td>WAGO-Tragplatten</td>
</tr>
<tr>
<td>5.4</td>
<td>Abstände</td>
</tr>
<tr>
<td>5.5</td>
<td>Montagereihenfolge</td>
</tr>
<tr>
<td>5.6</td>
<td>Geräte einfügen und entfernen</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Feldbuskoppeler/-controller einfügen</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Feldbuskoppeler/-controller entfernen</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Busklemme einfügen</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Busklemme entfernen</td>
</tr>
<tr>
<td>6</td>
<td>Geräte anschließen</td>
</tr>
<tr>
<td>6.1</td>
<td>Datenkontakte/Klemmenbus</td>
</tr>
<tr>
<td>6.2</td>
<td>Leistungskontakte/Feldversorgung</td>
</tr>
<tr>
<td>6.3</td>
<td>Leiter an CAGE CLAMP® anschließen</td>
</tr>
<tr>
<td>7</td>
<td>Funktionsbeschreibung</td>
</tr>
<tr>
<td>7.1</td>
<td>Betriebssystem</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Anlauf des Feldbuscontrollers</td>
</tr>
<tr>
<td>7.1.2</td>
<td>PFC-Zyklus</td>
</tr>
<tr>
<td>7.2</td>
<td>Prozessdatenaufbau</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Prinzipieller Aufbau</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Beispiel für ein Eingangsprozessabbild</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Beispiel für ein Ausgangsprozessabbild</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Prozessdaten MODBUS/TCP</td>
</tr>
<tr>
<td>7.3</td>
<td>Datenaustausch</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Speicherbereiche</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Adressierung</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Adressierung der Busklemmen</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>IEC-61131-3-Adressräume</td>
</tr>
<tr>
<td>7.3.2.3</td>
<td>Absolute Adressierung</td>
</tr>
</tbody>
</table>
Kommunikationsprotokolle .. 144
TCP (Transmission Control Protocol) ... 144
UDP (User Datagram Protocol) ... 144
Konfigurations- und Diagnoseprotokolle ... 145
BootP (Bootstrap Protocol) .. 145
HTTP (Hypertext Transfer Protocol) ... 146
MODBUS-Funktionen .. 147
Allgemeines .. 147
Anwendung der MODBUS-Funktionen ... 150
Beschreibung der MODBUS-Funktionen .. 151
Funktionscode FC1 (Read Coils) ... 152
Funktionscode FC2 (Read Discrete Inputs) 154
Funktionscode FC3 (Read Holding Registers) 156
Funktionscode FC4 (Read Input Registers) 157
Funktionscode FC5 (Write Single Coil) 158
Funktionscode FC6 (Write Single Register) 159
Funktionscode FC7 (Read Exception Status) 160
Funktionscode FC11 (Get Comm Event Counter) 161
Funktionscode FC15 (Write Multiple Coils) 162
Funktionscode FC16 (Write Multiple Registers) 164
Funktionscode FC23 (Read/Write Multiple Registers) 165
MODBUS-Register-Mapping... 167
MODBUS-Register ... 169
Zugriff auf Registerwerte .. 170
Watchdog-Register .. 170
Diagnoseregister .. 175
Konfigurationsregister ... 176
Firmware-Informationsregister .. 179
Konstantenregister ... 181
Busklemmen ... 183
Übersicht ... 183
Aufbau der Prozessdaten für MODBUS/TCP 184
Digitalleingangsklemmen ... 185
1-Kanal-Digitalleingangsklemmen mit Diagnose 185
2-Kanal-Digitalleingangsklemmen .. 185
2-Kanal-Digitalleingangsklemmen mit Diagnose 185
2-Kanal-Digitalleingangsklemmen mit Diagnose und Ausgangsdaten ... 185
4-Kanal-Digitalleingangsklemmen .. 186
8-Kanal-Digitalleingangsklemmen .. 186
8-Kanal-Digitalleingangsklemmen PTC mit Diagnose und Ausgangsdaten ... 186
16-Kanal-Digitalleingangsklemmen ... 187
Digitalausgangsklemmen ... 188
1-Kanal-Digitalausgangsklemmen mit Eingangsdaten 188
2-Kanal-Digitalausgangsklemmen .. 188
2-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten ... 188
4-Kanal-Digitalausgangsklemmen .. 190
12.2.2.5 4-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten ... 190
12.2.2.6 8-Kanal-Digitalausgangsklemmen ... 190
12.2.2.7 8-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten ... 191
12.2.2.8 16-Kanal-Digitalausgangsklemmen ... 191
12.2.2.9 8-Kanal-Digitaleingangsklemmen/-Digitalausgangsklemmen ... 192
12.2.3 Analogeingangsklemmen .. 193
12.2.3.1 1-Kanal-Analogeingangsklemmen ... 193
12.2.3.2 2-Kanal-Analogeingangsklemmen ... 193
12.2.3.3 4-Kanal-Analogeingangsklemmen ... 194
12.2.3.4 3-Phasen-Leistungsmessklemme ... 195
12.2.3.5 8-Kanal-Analogeingangsklemmen ... 195
12.2.4 Analogausgangsklemmen .. 196
12.2.4.1 2-Kanal-Analogausgangsklemmen ... 196
12.2.4.2 4-Kanal-Analogausgangsklemmen ... 196
12.2.5 Sonderklemmen .. 197
12.2.5.1 Zählerklemmen .. 197
12.2.5.2 Pulsweitenklemmen .. 199
12.2.5.3 Serielle Schnittstellen mit alternativem Datenformat ... 199
12.2.5.4 Serielle Schnittstellen mit Standard-Datenformat ... 200
12.2.5.5 Datenaustauschklemmen ... 200
12.2.5.6 SSI-Geber-Interface-Busklemmen ... 201
12.2.5.7 Weg- und Winkelmessung .. 201
12.2.5.8 DC-Drive Controller .. 203
12.2.5.9 Steppercontroller .. 204
12.2.5.10 RTC-Modul .. 205
12.2.5.11 DALI/DSI-Masterklemme .. 205
12.2.5.12 DALI-Multi-Master-Klemme .. 206
12.2.5.13 LON®-FTT-Klemme .. 208
12.2.5.14 Funkreceiver EnOcean .. 208
12.2.5.15 MP-Bus-Masterklemme .. 208
12.2.5.16 Bluetooth® RF-Transceiver .. 209
12.2.5.17 Schwingstärke/Wälzlagerüberwachung VIB I/O .. 210
12.2.5.18 KNX/EIB/TP1-Klemme .. 210
12.2.5.19 AS-Interface-Masterklemme .. 212
12.2.6 Systemklemmen .. 213
12.2.6.1 Systemklemmen mit Diagnose .. 213
12.2.6.2 Binäre Platzhalterklemmen .. 213

13 Einsatz in explosionsgefährdeten Bereichen .. 214
13.1 Beispielhafter Aufbau der Kennzeichnung .. 215
13.1.1 Kennzeichnung für Europa gemäß ATEX und IEC-Ex .. 215
13.1.2 Kennzeichnung für Amerika gemäß NEC 500 .. 220
13.2 Errichtungsbestimmungen .. 221
13.2.1 Besondere Bedingungen für den sicheren Ex Betrieb (ATEX Zertifikat TÜV 07 ATEX 554086 X) .. 222
13.2.2 Besondere Bedingungen für den sicheren Ex Betrieb (ATEX Zertifikat TÜV 12 ATEX 106032 X) .. 223
13.2.3 Besondere Bedingungen für den sicheren Ex Betrieb (IEC-Ex Zertifikat IECEx TUN 09.0001 X) .. 224
13.2.4 Besondere Bedingungen für den sicheren Ex Betrieb (IEC-Ex Zertifikat IECEx TUN 12.0039 X) ... 225
13.2.5 Besondere Bedingungen für den sicheren Betrieb nach ANSI/ISA 12.12.01 ... 226

Abbildungsverzeichnis ... 227
Tabellenverzeichnis ... 229
1 Hinweise zu dieser Dokumentation

Hinweis

Dokumentation aufbewahren!

1.1 Gültigkeitsbereich

Die vorliegende Dokumentation gilt für den „ETHERNET TCP/IP-Controller“ (750-843).

Das Produkt „ETHERNET TCP/IP-Controller“ (750-843) darf nur nach Anweisungen dieser Betriebsanleitung und der Systembeschreibung zum WAGO-I/O-SYSTEM 750 installiert und betrieben werden.

ACHTUNG Versorgungsauslegung des WAGO-I/O-SYSTEMs 750 beachten!
Sie benötigen zusätzlich zu dieser Betriebsanleitung die Systembeschreibung zum WAGO-I/O-SYSTEM 750, die unter www.wago.com herunterzuladen ist. Dort erhalten Sie unter anderem wichtige Informationen zu Potentialtrennung, Systemversorgung und Einspeisungsvorschriften.

1.2 Urheberschutz

1.3 Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEFAHR</td>
<td>Warnung vor Personenschäden!
Kennzeichnet eine unmittelbare Gefährdung mit hohem Risiko, die Tod oder schwere Körperverletzung zur Folge haben wird, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GEFAHR</td>
<td>Warnung vor Personenschäden durch elektrischen Strom!
Kennzeichnet eine unmittelbare Gefährdung mit hohem Risiko, die Tod oder schwere Körperverletzung zur Folge haben wird, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WARNUNG</td>
<td>Warnung vor Personenschäden!
Kennzeichnet eine mögliche Gefährdung mit mittlerem Risiko, die Tod oder (schwere) Körperverletzung zur Folge haben kann, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VORSICHT</td>
<td>Warnung vor Personenschäden!
Kennzeichnet eine mögliche Gefährdung mit geringem Risiko, die leichte oder mittlere Körperverletzung zur Folge haben könnte, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ACHTUNG</td>
<td>Warnung vor Sachschäden!
Kennzeichnet eine mögliche Gefährdung, die Sachschaden zur Folge haben könnte, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>Warnung vor Sachschäden durch elektrostatische Aufladung!
Kennzeichnet eine mögliche Gefährdung, die Sachschaden zur Folge haben könnte, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinweis</td>
<td>Wichtiger Hinweis!
Kennzeichnet eine mögliche Fehlfunktion, die aber keinen Sachschaden zur Folge hat, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td>Weitere Information
Weist auf weitere Informationen hin, die kein wesentlicher Bestandteil dieser Dokumentation sind (z. B. Internet).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.4 Darstellung der Zahlensysteme

Tabelle 1: Darstellungen der Zahlensysteme

<table>
<thead>
<tr>
<th>Zahlensystem</th>
<th>Beispiel</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dezimal</td>
<td>100</td>
<td>Normale Schreibweise</td>
</tr>
<tr>
<td>Hexadezimal</td>
<td>0x64</td>
<td>C-Notation</td>
</tr>
<tr>
<td>Binär</td>
<td>'100', '0110.0100'</td>
<td>In Hochkomma, Nibble durch Punkt getrennt</td>
</tr>
</tbody>
</table>

1.5 Schriftkonventionen

Tabelle 2: Schriftkonventionen

<table>
<thead>
<tr>
<th>Schriftart</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>kursiv</td>
<td>Namen von Pfaden und Dateien werden kursiv dargestellt z. B.:</td>
</tr>
<tr>
<td></td>
<td>\texttt{C:\Programme\WAGO-I/O-CHECK}</td>
</tr>
<tr>
<td>Menü</td>
<td>Menüpunkte werden fett dargestellt z. B.:</td>
</tr>
<tr>
<td>></td>
<td>Ein „Größer als“- Zeichen zwischen zwei Namen bedeutet die</td>
</tr>
<tr>
<td></td>
<td>Auswahl eines Menüpunktes aus einem Menü z. B.:</td>
</tr>
<tr>
<td></td>
<td>\texttt{Datei > Neu}</td>
</tr>
<tr>
<td>Eingabe</td>
<td>Bezeichnungen von Eingabe- oder Auswahlfeldern werden fett</td>
</tr>
<tr>
<td></td>
<td>dargestellt z. B.:</td>
</tr>
<tr>
<td></td>
<td>\texttt{Messbereichsanfang}</td>
</tr>
<tr>
<td>„Wert“</td>
<td>Eingabe- oder Auswahlwerte werden in Anführungszeichen</td>
</tr>
<tr>
<td></td>
<td>dargestellt z. B.:</td>
</tr>
<tr>
<td></td>
<td>\texttt{Geben Sie unter Messbereichsanfang den Wert „4 mA“ ein.}</td>
</tr>
<tr>
<td>[Button]</td>
<td>Schaltflächenbeschriften in Dialogen werden fett dargestellt und</td>
</tr>
<tr>
<td></td>
<td>in eckige Klammern eingefasst z. B.:</td>
</tr>
<tr>
<td>[Eingabe]</td>
<td>\texttt{[Eingabe]}</td>
</tr>
<tr>
<td>[Taste]</td>
<td>Tastenbeschriften auf der Tastatur werden fett dargestellt und in</td>
</tr>
<tr>
<td></td>
<td>eckige Klammern eingefasst z. B.:</td>
</tr>
<tr>
<td></td>
<td>\texttt{[F5]}</td>
</tr>
</tbody>
</table>
2 Wichtige Erläuterungen

2.1 Rechtliche Grundlagen

2.1.1 Änderungsvorbehalt

2.1.2 Personalqualifikation

Alle Eingriffe in die Steuerung sind stets von Fachkräften mit ausreichenden Kenntnissen in der SPS-Programmierung durchzuführen.

2.1.3 Bestimmungsgemäße Verwendung des WAGO-I/O-SYSTEMs 750

Feldbuskoppler, Feldbuscontroller und Busklemmen des modularen WAGO-I/O-SYSTEMs 750 dienen dazu, digitale und analoge Signale von Sensoren aufzunehmen und an Aktoren auszugeben oder an übergeordnete Steuerungen weiterzuleiten. Mit den programmierbaren Feldbuscontrollern ist zudem eine (Vor-)Verarbeitung möglich.

Die Geräte sind für ein Arbeitsumfeld entwickelt, welches der Schutzklasse IP20 genügt. Es besteht Fingerschutz und Schutz gegen feste Fremdkörper bis 12,5 mm, jedoch kein Schutz gegen Wasser. Der Betrieb der Geräte in nasser und staubiger Umgebung ist nicht gestattet, sofern nicht anders angegeben.

Der Betrieb von Geräten des WAGO-I/O-SYSTEMs 750 im Wohnbereich ist ohne weitere Maßnahmen nur zulässig, wenn diese die Emissionsgrenzen (Störaussendungen) gemäß EN 61000-6-3 einhalten. Entsprechende Angaben finden Sie im Kapitel „Gerätebeschreibung“ > „Normen und Richtlinien“ im Handbuch zum eingesetzten Feldbuskoppler/-controller.

2.1.4 Technischer Zustand der Geräte

Wünsche an eine abgewandelte bzw. neue Hard- oder Software-Konfiguration richten Sie bitte an die WAGO Kontakttechnik GmbH & Co. KG.
2.2 Sicherheitshinweise

Beim Einbauen des Gerätes in Ihre Anlage und während des Betriebes sind folgende Sicherheitshinweise zu beachten:

GEFAHR

Nicht an Geräten unter Spannung arbeiten!
Schalten Sie immer alle verwendeten Spannungsversorgungen für das Gerät ab, bevor Sie es montieren, Störungen beheben oder Wartungsarbeiten vornehmen.

GEFAHR

Nur in Gehäusen, Schränken oder elektrischen Betriebsräumen einbauen!

GEFAHR

Unfallverhütungsvorschriften beachten!
Beachten Sie bei der Montage, Inbetriebnahme, Wartung und Störbehebung die für Ihre Maschine zutreffenden Unfallverhütungsvorschriften wie beispielsweise die BGV A 3, „Elektrische Anlagen und Betriebsmittel“.

GEFAHR

Auf normgerechten Anschluss achten!
Zur Vermeidung von Gefahren für das Personal und Störungen an Ihrer Anlage, verlegen Sie die Daten- und Versorgungsleitungen normgerecht und achten Sie auf die korrekte Anschlussbelegung. Beachten Sie die für Ihre Anwendung zutreffenden EMV-Richtlinien.

ACHTUNG

Defekte oder beschädigte Geräte austauschen!
Tauschen Sie defekte oder beschädigte Geräte (z. B. bei deformierten Kontakten) aus, da die Funktion der betroffenen Geräte langfristig nicht sichergestellt ist.

ACHTUNG

Geräte vor kriechenden und isolierenden Stoffen schützen!

ACHTUNG

Nur mit zulässigen Materialien reinigen!
Reinigen Sie verschmutzte Kontakte mit ölfreier Druckluft oder mit Spiritus und einem Ledertuch.
ACHTUNG **Kein Kontaktspray verwenden!**
Verwenden Sie kein Kontaktspray, da in Verbindung mit Verunreinigungen die Funktion der Kontaktstelle beeinträchtigt werden kann.

ACHTUNG **Verpolungen vermeiden!**
Vermeiden Sie die Verpolung der Daten- und Versorgungsleitungen, da dies zu Schäden an den Geräten führen kann.

ESD **Elektrostatische Entladung vermeiden!**
2.3 Spezielle Einsatzbestimmungen für ETHERNET-Geräte

Wo nicht speziell beschrieben, sind ETHERNET-Geräte für den Einsatz in lokalen Netzwerken bestimmt. Beachten Sie folgende Hinweise, wenn Sie ETHERNET-Geräte in Ihrer Anlage einsetzen:

• Verbinden Sie Steuerungskomponenten und Steuerungsnetzwerke nicht mit einem offenen Netzwerk wie dem Internet oder einem Büronetzwerk. WAGO empfiehlt, Steuerungskomponenten und Steuerungsnetzwerke hinter einer Firewall anzubringen.

• Beschränken Sie den physikalischen und elektronischen Zugang zu sämtlichen Automatisierungskomponenten auf einen autorisierten Personenkreis.

• Ändern Sie vor der ersten Inbetriebnahme unbedingt die standardmäßig eingestellten Passwörter! Sie verringern so das Risiko, dass Unbefugte Zugriff auf Ihr System erhalten.

• Ändern Sie regelmäßig die verwendeten Passwörter! Sie verringern so das Risiko, dass Unbefugte Zugriff auf Ihr System erhalten.

• Ist ein Fernzugriff auf Steuerungskomponenten und Steuerungsnetzwerke erforderlich, sollte ein „Virtual Private Network“ (VPN) genutzt werden.

• Führen Sie regelmäßig eine Bedrohungsanalyse durch. So können Sie prüfen, ob die getroffenen Maßnahmen Ihrem Schutzbedürfnis entsprechen.

• Wenden Sie in der sicherheitsgerichteten Gestaltung Ihrer Anlage „Defense-in-depth“-Mechanismen an, um den Zugriff und die Kontrolle auf individuelle Produkte und Netzwerke einzuschränken.
3 Systembeschreibung

Das WAGO-I/O-SYSTEM 750 ist ein modulares und feldbusunabhängiges Ein-/Ausgabesystem (E/A-System). Der hier beschriebene Aufbau besteht aus einem Feldbuskoppler/-controller (1) und den angereihten Busklemmen (2) für beliebige Signalformen, die zusammen den Feldbusknoten bilden. Die Endklemme (3) schließt den Knoten ab und ist für den ordnungsgemäßen Betrieb des Feldbusknotens zwingend erforderlich.

Abbildung 1: Feldbusknoten (Beispiel)

Feldbuskoppler/-controller stehen für diverse Feldbussysteme zur Verfügung.

Feldbuskoppler/-controller enthalten ein Feldbus-Interface, eine Elektronik und eine integrierte Einspeiseklemme. Das Feldbus-Interface bildet die physikalische Schnittstelle zum jeweiligen Feldbussystem. Die Elektronik verarbeitet die Daten der Busklemmen und stellt diese für die Feldbuskommunikation bereit. Über die integrierte Einspeiseklemme werden die 24V-Systemversorgung und die 24V-Feldversorgung eingespeist.

Die Komponenten des WAGO-I/O-SYSTEMs 750 besitzen eine übersichtliche Anschlussebene, Leuchtdioden für die Statusanzeige, einsteckbare Mini-WSB-Schilder und Gruppenbeschriftungsschilder für die Beschriftung.

Die 1-, 2- oder 3-Leitertechnik erlaubt eine direkte Sensor- bzw. Aktorverdrahtung.
3.1 Fertigungsnummer

Abbildung 2: Beispiel einer seitlichen Gehäusebedruckung

<table>
<thead>
<tr>
<th>Fertigungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 03 01 02 03</td>
</tr>
<tr>
<td>Kalender-</td>
</tr>
<tr>
<td>woche</td>
</tr>
<tr>
<td>Jahr</td>
</tr>
<tr>
<td>Software-</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Hardware-</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Firmware-</td>
</tr>
<tr>
<td>Loader-Version</td>
</tr>
<tr>
<td>Interne</td>
</tr>
<tr>
<td>Nummer</td>
</tr>
</tbody>
</table>

Abbildung 3: Beispiel einer Fertigungsnummer

Die Fertigungsnummer setzt sich zusammen aus Herstellungswoche und -jahr, Software-Version (optional), Hardware-Version, Firmware-Loader-Version (optional) und weiteren internen Informationen der WAGO Kontakttechnik GmbH & Co. KG.

3.2 Hardware-Adresse (MAC-ID)

Das Gerät ETHERNET TCP/IP-Controller trägt eine weltweit eindeutige physikalische Adresse, die MAC-ID (Media-Access-Control-Identity).

3.3 **Komponenten-Update**

Für den Fall des Updates einer Komponente enthält die seitliche Bedruckung jeder Komponente eine vorbereitete Matrix.

Diese Matrix stellt für insgesamt drei Updates Spalten zum Eintrag der aktuellen Update-Daten zur Verfügung, wie Betriebsauftrags (BA) -Nummer (NO; ab KW 13/2004), Update-Datum (DS), Software-Version (SW, optional), Hardware-Version (HW) und die Firmware-Loader-Version (FWL, optional).

<table>
<thead>
<tr>
<th>Aktuelle Versionsangabe für</th>
<th>1. Update</th>
<th>2. Update</th>
<th>3. Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA-Nummer</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update-Datum</td>
<td>DS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software-Version</td>
<td>SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware-Version</td>
<td>HW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware-Loader-Version</td>
<td>FWL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ist das Update einer Komponente erfolgt, werden die aktuellen Versionsangaben in die Spalten der Matrix eingetragen.

Zusätzlich wird bei dem Update eines Feldbuskopplers/-controllers auch die Abdeckklappe der Konfigurationsschnittstelle mit der aktuellen Fertigungs- und Betriebsauftragsnummer bedruckt.

Die ursprünglichen Fertigungsangaben auf dem Gehäuse der Komponente bleiben dabei erhalten.

3.4 **Lagerung, Kommissionierung und Transport**

Die Komponenten sind möglichst in der Originalverpackung zu lagern. Ebenso bietet die Originalverpackung beim Transport den optimalen Schutz.

3.5 Aufbaurichtlinien und Normen

- **DIN 60204**: Elektrische Ausrüstung von Maschinen
- **DIN EN 50178**: Ausrüstung von Starkstromanlagen mit elektronischen Betriebsmitteln
 (Ersatz für VDE 0160)
- **EN 60439**: Niederspannung – Schaltgerätekombinationen
3.6 Spannungsversorgung

3.6.1 Potentialtrennung

Innerhalb des Feldbusknotens bestehen drei galvanisch getrennte Potentialgruppen:

- galvanisch getrenntes Feldbus-Interface
- Elektronik des Feldbuskopplers/-controllers und der Busklemmen (Klemmenbus)
- Alle Busklemmen besitzen eine galvanische Trennung zwischen der Systemelektronik (Klemmenbus, Logik) und der feldseitigen Elektronik. Bei einigen digitalen und analogen Eingangsklemmen ist diese Trennung kanalweise aufgebaut, siehe Katalog.

Abbildung 4: Potentialtrennung für Feldbuskoppler/-controller (Beispiel)
3.6.2 Systemversorgung

3.6.2.1 Anschluss

Hinweis

Keine unzulässige Spannung/Frequenz aufschalten!

Schalten Sie keine unzulässigen Spannungs- oder Frequenzwerte auf. Dieses kann zur Zerstörung der Baugruppe führen.

Abbildung 5: Systemversorgung über Feldbuskoppler/-controller (li.) und über Potential einspeiseklemme (re.)

<table>
<thead>
<tr>
<th>Position</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Systemversorgung DC 24 V (-25 % … +30 %)</td>
</tr>
<tr>
<td>2</td>
<td>Systemversorgung 0 V</td>
</tr>
</tbody>
</table>

Hinweis
Rücksetzen des Systems nur gleichzeitig bei allen Versorgungsmodulen!
Führen Sie das Rücksetzen des Systems durch gleichzeitiges Aus- und
Wiedereinschalten der Systemversorgung gleichzeitig an allen
Versorgungsmodulen (Feldbuskoppler/-controller und
Potentialeinspeiseklemme mit Busnetzteil) durch.

3.6.2.2 Auslegung

Hinweis
Empfehlung
Eine stabile Netzversorgung kann nicht immer und überall vorausgesetzt
werden. Sie sollten daher geregelte Netzteile verwenden, um die Qualität
der Versorgungsspannung zu gewährleisten.

Die Versorgungskapazität der Feldbuskoppler/-controller bzw. der
Potentialeinspeiseklemme mit Busnetzteil kann den technischen Daten der
Komponenten entnommen werden.

Tabelle 4: Auslegung

<table>
<thead>
<tr>
<th>Interne Stromaufnahme *)</th>
<th>Stromaufnahme über Systemspannung (5 V für Elektronik der Busklemmen und Feldbuskoppler/-controller).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenstrom für Busklemmen *)</td>
<td>Verfügbare Strom für die Busklemmen. Wird vom Busnetzteil bereitgestellt. Siehe Feldbuskoppler/-controller und Potentialeinspeiseklemme mit Busnetzteil</td>
</tr>
</tbody>
</table>

*) vgl. aktuellen Katalog, Handbücher, Internet
Beispiel:

Berechnung Stromaufnahme am Feldbuskoppler/-controller

<table>
<thead>
<tr>
<th>Interne Stromaufnahme des FBK</th>
<th>350 mA bei 5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenstrom für Busklemmen</td>
<td>1650 mA bei 5 V</td>
</tr>
<tr>
<td>Summe $I_{(5\text{V})}$ ges</td>
<td>2000 mA bei 5 V</td>
</tr>
</tbody>
</table>

Für jede Busklemme ist die interne Stromaufnahme in den technischen Daten der Busklemme angegeben. Um den Gesamtbedarf zu ermitteln, werden die Werte aller Busklemmen im Knoten summiert.

Hinweis

Summenstrom für Busklemmen beachten, evtl. Potential neu einspeisen!

Sobald die Summe der internen Stromaufnahmen der Busklemmen den Summenstrom für Busklemmen übersteigt, müssen Sie eine Potentialeinspeiseklemme mit Busnetzteil setzen. Platzieren Sie diese vor die Position, an der der zulässige Summenstrom überschritten würde.

Beispiel:

Berechnung Summenstrom am Feldbuskoppler/-controller

An einem Feldbuskoppler/-controller soll ein Knotenaufbau mit 20 Relaisklemmen (750-517) und 30 Digitaleingangsklemmen (750-405) angereiht werden:

- Interne Stromaufnahmen
 - $20 \times 90\text{ mA} = 1800\text{ mA bei 5 V}$
 - $+ 30 \times 2\text{ mA} = 60\text{ mA bei 5 V}$

Summe der internen Stromaufnahmen 1860 mA bei 5 V

Der Feldbuskoppler/-controller kann aber nur 1650 mA für die Busklemmen bereitstellen (siehe Datenblatt). Folglich muss eine Potentialeinspeiseklemme mit Busnetzteil (750-613), z. B. in der Mitte des Knotens, vorgesehen werden.

Hinweis

Empfehlung

Sie können mit der WAGO-ProServe®-Software smartDESIGNER den Aufbau eines Feldbusknotens konfigurieren. Über die integrierte Plausibilitätsprüfung können Sie die Konfiguration überprüfen.

Der maximale Eingangssstrom der 24V-Systemversorgung beträgt je Einspeisestelle 500 mA.

Die genaue Stromaufnahme ($I_{(V)}$) kann mit folgenden Formeln ermittelt werden:
Feldbuskoppler oder -controller
\[I_{\text{ges.}} = \text{Summe aller Stromaufnahmen der angereihten Busklemmen + interne Stromaufnahme des Feldbuskopplers/-controllers} \]

Potentieneinspeiseklemme
\[I_{\text{ges.}} = \text{Summe aller Stromaufnahmen der angereihten Busklemmen an der Potentieneinspeiseklemme} \]

Eingangsstrom \[I_{(24\, \text{V})} = \frac{5\, \text{V}}{24\, \text{V}} \times \frac{I_{\text{ges.}}}{\eta} \]
\[\eta = 0.87 \, (87\% \text{ Netzteilwirkungsgrad bei Nennlast 24\, V}) \]

Hinweis
Bei Test der Stromaufnahme alle Ausgänge aktivieren!
Übersteigt die Stromaufnahme einer Einspeisestelle für die 24V-Systemversorgung 500 mA, kann die Ursache ein falsch ausgelegter Knoten oder ein Defekt sein.
Sie müssen bei dem Test alle Ausgänge aktivieren.
3.6.3 Feldversorgung

3.6.3.1 Anschluss

Die feldseitige Versorgungsspannung wird am Feldbuskoppler/-controller (DC 24 V) eingespeist. In diesem Fall handelt es sich um eine passive Einspeisung ohne Schutzeinrichtung.

Abbildung 7: Feldversorgung für Standard-Feldbuskoppler/-controller und erweiterte ECO-Feldbuskoppler
Tabelle 5: Legende zur Abbildung „Feldversorgung für Standard-Feldbuskoppler/-controller und erweiterte ECO-Feldbuskoppler”

<table>
<thead>
<tr>
<th>Feldversorgung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 24 V (-15 % / +20 %)</td>
</tr>
<tr>
<td>2 0 V</td>
</tr>
<tr>
<td>3 Optionales Erdpotential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungskontakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Potentialverteilung zu benachbarten Busklemmen</td>
</tr>
</tbody>
</table>

Die Weiterleitung der Versorgungsspannung für die Feldseite erfolgt über die Leistungskontakte. Das geschieht automatisch durch Anrasten der jeweiligen Busklemme.

Die Strombelastung der Leistungskontakte darf 10 A nicht dauerhaft überschreiten.

Durch Setzen einer zusätzlichen Einspeiseklemme wird die über die Leistungskontakte geführte Feldversorgung unterbrochen. Ab dort erfolgt eine neue Einspeisung, die auch einen Potentialwechsel beinhalten kann.

Hinweis

Potential bei Unterbrechung der Leistungskontakte neu einspeisen!

Hinweis

Bei unterschiedlichen Potentialgruppen Distanzklemme verwenden!
3.6.3.2 Absicherung

Die interne Absicherung der Feldversorgung ist für verschiedene Feldspannungen über entsprechende Potentialeinspeiseklemmen möglich.

Tabelle 6: Potentialeinspeiseklemmen

<table>
<thead>
<tr>
<th>Bestellnummer</th>
<th>Feldspannung</th>
</tr>
</thead>
<tbody>
<tr>
<td>750-601</td>
<td>24 V DC, Einspeisung/Sicherung</td>
</tr>
<tr>
<td>750-609</td>
<td>230 V AC, Einspeisung/Sicherung</td>
</tr>
<tr>
<td>750-615</td>
<td>120 V AC, Einspeisung/Sicherung</td>
</tr>
<tr>
<td>750-617</td>
<td>24 V AC, Einspeisung/Sicherung</td>
</tr>
<tr>
<td>750-610</td>
<td>24 V DC, Einspeisung/Sicherung/Diagnose</td>
</tr>
<tr>
<td>750-611</td>
<td>230 V AC, Einspeisung/Sicherung/Diagnose</td>
</tr>
<tr>
<td>750-606</td>
<td>Potentialeinspeisung DC 24 V, 1,0 A, Ex i</td>
</tr>
<tr>
<td>750-625/000-001</td>
<td>Potentialeinspeisung DC 24 V, 1,0 A, Ex i (ohne Diagnose)</td>
</tr>
</tbody>
</table>

ACHTUNG

Auf max. Verlustleistung und ggf. UL-Zulassung achten!
Bei Einspeiseklemmen mit Sicherungshalter dürfen Sie nur Sicherungen mit einer max. Verlustleistung von 1,6 W (IEC 127) einsetzen. Bei Anlagen, die eine UL-Zulassung besitzen, achten Sie zusätzlich darauf, dass Sie nur UL-zugelassene Sicherungen verwenden.
Um eine Sicherung einzulegen, zu wechseln oder um nachfolgende Busklemmen spannungsfrei zu schalten, kann der Sicherungshalter herausgezogen werden. Dazu wird, z. B. mit einem Schraubendreher, in einen der beidseitig vorhandenen Schlitze gegriffen und der Halter herausgezogen.

Abbildung 9: Sicherungshalter ziehen

Der Sicherungshalter wird geöffnet, indem die Abdeckung zur Seite geklappt wird.

Abbildung 10: Sicherungshalter öffnen

Abbildung 11: Sicherung wechseln

Nach dem Sicherungswechsel wird der Sicherungshalter in seine ursprüngliche Position zurückgeschoben.
Alternativ kann die Absicherung extern erfolgen. Hierbei bieten sich die Sicherungsklemmen der WAGO-Serien 281 und 282 an.

Abbildung 12: Sicherungsklemmen für Kfz-Sicherungen, Serie 282

Abbildung 13: Sicherungsklemmen für Kfz-Sicherungen, Serie 2006

Abbildung 14: Sicherungsklemmen mit schwenkbarem Sicherungshalter, Serie 281

Abbildung 15: Sicherungsklemmen mit schwenkbarem Sicherungshalter, Serie 2002
3.6.4 Ergänzende Einspeisevorschriften

Der zertifizierte Betrieb des Systems erfordert Filterklemmen für die 24V-Versorgung.

Tabelle 7: Filterklemmen für die 24V-Versorgung

<table>
<thead>
<tr>
<th>Bestellnr.</th>
<th>Bezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>750-626</td>
<td>Supply Filter</td>
<td>Filterklemme für Systemversorgung und Feldversorgung (24 V, 0 V), d. h. für Feldbuskoppler/-controller und Bus Einspeisung (750-613)</td>
</tr>
<tr>
<td>750-624</td>
<td>Supply Filter</td>
<td>Filterklemme für die 24V-Feldversorgung (750-602, 750-601, 750-610)</td>
</tr>
</tbody>
</table>

Daher ist zwingend folgendes Einspeisekonzept zu beachten.

Abbildung 16: Einspeisekonzept

Hinweis

Für Potentialausgleich Einspeiseklemme verwenden!

Setzen Sie hinter der Filterklemme 750-626 eine zusätzliche Potentialeinspeiseklemme 750-601/-602/-610 dann ein, wenn Sie den unteren Leistungskontakt für Potentialausgleich beispielsweise zwischen Schirmanschlüssen verwenden wollen und einen zusätzlichen Abgriff für dieses Potential benötigen.
3.6.5 Versorgungsbeispiel

Hinweis
System- und Feldversorgung getrennt einspeisen!
Speisen Sie die Systemversorgung und die Feldversorgung getrennt ein, um bei aktorseitigen Kurzschlüssen den Busbetrieb zu gewährleisten.

Abbildung 17: Versorgungsbeispiel für Feldbuskoppler/-controller
Tabelle 8: Legende zur Abbildung „Versorgungsbeispiel für Feldbuskoppler/-controller“

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Potentialeinspeisung am Feldbuskoppler/-controller über externe Einspeiseklemme</td>
</tr>
<tr>
<td>2</td>
<td>Potentialeinspeisung mit jeweils optionaler Funktionserde</td>
</tr>
<tr>
<td>3</td>
<td>Potentialeinspeisung mit Busnetzteil</td>
</tr>
<tr>
<td>4</td>
<td>Distanzklemme empfohlen</td>
</tr>
<tr>
<td>5</td>
<td>Potentialeinspeisung passiv</td>
</tr>
<tr>
<td>6</td>
<td>Potentialeinspeisung mit Sicherungshalter/Diagnose</td>
</tr>
</tbody>
</table>
3.6.6 Netzgeräte

Das WAGO-I/O-SYSTEM 750 benötigt zum Betrieb eine 24V-Gleichspannung (Systemversorgung).

Hinweis

Eine stabile Netzversorgung kann nicht immer und überall vorausgesetzt werden. Daher sollten Sie geregelte Netzteile verwenden, um die Qualität der Versorgungsspannung zu gewährleisten (siehe auch Tabelle „EAGO-Netzgeräte“).

Für kurze Spannungseinbrüche ist ein Puffer (200 µF pro 1 A Laststrom) einzuplanen.

Hinweis

Netzausfallzeit nicht nach IEC 61131-2!

Beachten Sie, dass die Netzausfallzeit von 10 ms nach IEC 61131-2 in einem Maximalausbau nicht eingehalten wird.

Je Einspeisestelle für die Feldversorgung ist der Strombedarf individuell zu ermitteln. Dabei sind alle Lasten durch Feldgeräte und Busklemmen zu berücksichtigen. Die Feldversorgung hat ebenfalls Einfluss auf die Busklemmen, da die Ein- und Ausgangstreiber einiger Busklemmen die Spannung der Feldversorgung benötigen.

Hinweis

System- und Feldversorgung getrennt einspeisen!

Speisen Sie die Systemversorgung und die Feldversorgung getrennt ein, um bei aktorseitigen Kurzschlüssen den Busbetrieb zu gewährleisten.

<table>
<thead>
<tr>
<th>WAGO-Netzgeräte Bestellnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>787-612</td>
<td>Primär getaktet; DC 24 V; 2,5 A Eingangsspannung AC 230 V</td>
</tr>
<tr>
<td>787-622</td>
<td>Primär getaktet, DC 24 V; 5 A Eingangsspannung AC 230 V</td>
</tr>
<tr>
<td>787-632</td>
<td>Primär getaktet; DC 24 V; 10 A Eingangsspannungsbereich AC 230/115 V</td>
</tr>
<tr>
<td>288-809</td>
<td>Schienenmontierbare Netzgeräte auf Universal Montagesockel AC 115 V/DC 24 V; 0,5 A</td>
</tr>
<tr>
<td>288-810</td>
<td>AC 230 V/DC 24 V; 0,5 A</td>
</tr>
<tr>
<td>288-812</td>
<td>AC 230 V/DC 24 V; 2 A</td>
</tr>
<tr>
<td>288-813</td>
<td>AC 115 V/DC 24 V; 2 A</td>
</tr>
</tbody>
</table>
3.7 Erdung

3.7.1 Erdung der Tragschiene

3.7.1.1 Rahmensaufbau

GEFAHR Auf ausreichende Erdung achten!
Achten Sie auf eine einwandfreie elektrische Verbindung zwischen der Tragschiene und dem Rahmen bzw. Gehäuse, um eine ausreichende Erdung sicher zu stellen.

3.7.1.2 Isolierter Aufbau

Ein isolierter Aufbau liegt dann vor, wenn es konstruktiv keine direkte leitende Verbindung zwischen Schrankrahmen oder Maschinenteilen und der Tragschiene gibt. Hier muss über einen elektrischen Leiter entsprechend geltender nationaler Sicherheitsvorschriften die Erdung aufgebaut werden.

Hinweis Empfehlung
Der optimale Aufbau ist eine metallische Montageplatte mit Erdungsanschluss, die elektrisch leitend mit der Tragschiene verbunden ist.

Die separate Erdung der Tragschiene kann einfach mit Hilfe der WAGO-Schutzleiterklemmen aufgebaut werden.

Tabelle 10: WAGO-Schutzleiterklemmen

<table>
<thead>
<tr>
<th>Bestellnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>283-609</td>
<td>1-Leiter-Schutzleiterklemme kontaktiert den Schutzleiter direkt auf der Tragschiene; Anschlussquerschnitt: 0,2 mm² … 16 mm²</td>
</tr>
</tbody>
</table>

Hinweis: Abschlussplatte (283-320) mit bestellen
3.7.2 Funktionserde

Die Funktionserde erhöht die Störfestigkeit gegenüber elektromagnetischen Einflüssen. Einige Komponenten des I/O-Systems besitzen einen Tragschienenkontakt, der elektromagnetische Störungen zur Tragschiene ableitet.

Abbildung 18: Tragschienenkontakt (Beispiel)

GEFAHR

Auf ausreichende Erdung achten!
Achten Sie auf den einwandfreien Kontakt zwischen dem Tragschienenkontakt und der Tragschiene. Die Tragschiene muss geerdet sein.
Beachten Sie dazu die Tragschieneneigenschaften, siehe Kapitel „Montage auf Tragschiene > Tragschieneneigenschaften“.

3.8 Schirmung

3.8.1 Allgemein

Der Einsatz geschirmter Kabel verringert elektromagnetische Einflüsse und erhöht damit die Signalqualität. Messfehler, Datenübertragungsfehler und Störung durch Überspannung können vermieden werden.

Hinweis **Kabelschirm mit Erdpotential verbinden!**

Hinweis **Verbessern der Schirmung durch großflächige Auflage!**

Hinweis **Daten- und Signalleitungen von Störquellen fernhalten!**
Verlegen Sie Daten- und Signalleitungen getrennt von allen Starkstrom führenden Kabeln und anderen Quellen hoher elektromagnetischer Emission (z. B. Frequenzumrichter oder Antriebe).

3.8.2 Busleitungen

Die Schirmung der Busleitung ist in den jeweiligen Aufbauregeln und Normen des Bussystems beschrieben.

3.8.3 Signalleitungen

Die Busklemmen für Analogsignale sowie einige Schnittstellen-Busklemmen besitzen Anschlussklemmen für den Schirm.

Hinweis **Geschirmte Signalleitungen verwenden!**
Verwenden Sie für analoge Signale sowie an Busklemmen, welche über Anschlussklemmen für den Schirm verfügen, ausschließlich geschirmte Signalleitungen. Nur so ist gewährleistet, dass die für die jeweilige Busklemme angegebene Genauigkeit und Störfestigkeit auch bei Vorliegen von auf das Signalkabel einwirkenden Störungen erreicht werden.
3.8.4 **WAGO-Schirm-Anschlusssystem**

Das WAGO-Schirm-Anschlusssystem besteht aus Schirm-Klemmbügeln, Sammelschienen und diversen Montagefüßen. Mit diesen können viele verschiedene Aufbauten realisiert werden.

Abbildung 19: Beispiel WAGO-Schirm-Anschlusssystem

Abbildung 20: Anwendung des WAGO-Schirm-Anschlusssystems
4 Gerätebeschreibung

Der programmierbare Feldbuscontroller 750-843 (kurz: PFC) kombiniert die Funktionalität eines Feldbuskopplers zur Anschaltung an den Feldbus ETHERNET mit der einer Speicherprogrammierbaren Steuerung (SPS).

Das lokale Prozessabbild wird in einen Eingangs- und Ausgangsdatenbereich unterteilt.

Die Daten der analogen Busklemmen werden in der Reihenfolge ihrer Position nach dem Feldbuscontroller in das Prozessabbild gemappt.

Die Bits der digitalen Busklemmen werden zu Worten zusammengefügt und im Anschluss an die analogen ebenfalls in das Prozessabbild gemappt. Ist die Anzahl der digitalen Ein-/Ausgangsdaten größer als 16 Bit, beginnt der Feldbuscontroller automatisch ein weiteres Wort.

Entsprechend der IEC-61131-3-Programmierung erfolgt die Bearbeitung der Prozessdaten vor Ort in dem Feldbuscontroller. Die daraus erzeugten Verknüpfungsergebnisse können direkt an die Aktoren ausgegeben oder über den Bus an die übergeordnete Steuerung übertragen werden.

Wahlweise kann der Feldbuscontroller über die ETHERNET-Medientypen „100BaseTX“ oder „10BaseT“ mit übergeordneten Systemen kommunizieren. Hierzu nutzt der Feldbuscontroller die RJ-45-Buchse.

Für die IEC-61131-3-Programmierung stellt der Feldbuscontroller 128 KB Programmspeicher, 64 KB Datenspeicher und 8 KB Retain-Speicher zur Verfügung.

Der Anwender hat Zugriff auf alle Feldbus- und Ein-/Ausgangsdaten.

Um Prozessdaten via ETHERNET zu versenden, unterstützt der Feldbuscontroller eine Reihe von Netzwerkprotokollen.

Der Prozessdatenaustausch findet mit Hilfe des MODBUS/TCP (UDP)-Protokolls statt.
Als Konfigurations- und Diagnoseprotokolle stehen BootP und HTTP zur Verfügung.

Der Anwender kann Clients und Server über eine interne Socket-API für alle Transportprotokolle (TCP, UDP, u.s.w.) mit Funktionsbausteinen programmieren. Zur Funktionserweiterung sind Library-Funktionen verfügbar.

Für die Konfiguration und Verwaltung des Systems bietet der Feldbuscontroller ein internes Dateisystem sowie einen integrierten Webserver.

Informationen über die Konfiguration, den Status und die E/A-Daten des Feldbusknoten sind als HTML-Seiten in dem Feldbuscontroller gespeichert. Diese Seiten können über einen üblichen WEB-Browser ausgelesen werden.

<table>
<thead>
<tr>
<th>Tabelle 11: Kompatibilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmiertool:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>- Version</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Feldbuscontroller:</td>
</tr>
<tr>
<td>750-843</td>
</tr>
</tbody>
</table>

Erläuterung:

- Feldbuscontroller arbeitet NICHT mit der WAGO-I/O-PRO-Version.

- SW ≥ xy Feldbuscontroller arbeitet mit der WAGO-I/O-PRO-Version, wenn der Feldbuscontroller die Softwareversion xy oder höher hat.
4.1 Ansicht

Die Ansicht zeigt drei Einheiten:

- Auf der linken Seite befindet sich der Feldbusanschluss.
- In dem mittleren Bereich sind LEDs zur Statusanzeige des Betriebes, zur Buskommunikation, zur Fehlermeldung und Diagnose sowie die Service-Schnittstelle zu finden.
- Die rechte Seite der Ansicht zeigt die Geräteeinspeisung mit Netzteil zur Systemversorgung und zur Feldversorgung der angereihten Busklemmen über Leistungskontakte. LEDs zeigen den Status der Betriebsspannung für das System und die Feldversorgung (Leistungskontakte) an.

Abbildung 21: Ansicht ETHERNET TCP/IP-Feldbuscontroller
Tabelle 12: Legende zur Ansicht ETHERNET TCP/IP-Feldbuscontroller

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Bezeichnung</th>
<th>Bedeutung</th>
<th>Details siehe Kapitel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON, LINK, TxD/RxD, ERROR, I/O, USR</td>
<td>Status-LEDs Feldbus</td>
<td>„Gerätebeschreibung“ > „Anzeigeelemente“</td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>Gruppenbezeichnungsträger (herausziehbar) mit zusätzlicher Beschriftungsmöglichkeit auf zwei Mini-WSB-Schildern</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>A, B bzw. C</td>
<td>Status-LEDs System-/Leistungskontakte</td>
<td>„Gerätebeschreibung“ > „Anzeigeelemente“</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>Datenkontakte</td>
<td>„Geräte anschließen“ > „Klemmenbus/Datenkontakte“</td>
</tr>
<tr>
<td>5</td>
<td>24 V, 0 V</td>
<td>CAGE CLAMP®-Anschlüsse Systemversorgung</td>
<td>„Geräte anschließen“ > „Leiter an CAGE CLAMP® anschließen“</td>
</tr>
<tr>
<td>6</td>
<td>+ CAGE CLAMP®-Anschlüsse Feldversorgung DC 24 V</td>
<td>„Geräte anschließen“ > „Leiter an CAGE CLAMP® anschließen“</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>Leistungskontakt DC 24 V</td>
<td>„Geräte anschließen“ > „Leistungskontakte/ Feldversorgung“</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>Entriegelungslasche</td>
<td>„Montieren“ > „Geräte einfügen und entfernen“</td>
</tr>
<tr>
<td>9</td>
<td>- CAGE CLAMP®-Anschlüsse Feldversorgung 0 V</td>
<td>„Systembeschreibung“ > „Spannungsversorgung“</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>Leistungskontakt 0 V</td>
<td>„Geräte anschließen“ > „Leistungskontakte/ Feldversorgung“</td>
</tr>
<tr>
<td>11</td>
<td>(Erdung)</td>
<td>CAGE CLAMP®-Anschlüsse Feldversorgung (Erdung)</td>
<td>„Systembeschreibung“ > „Spannungsversorgung“</td>
</tr>
<tr>
<td>12</td>
<td>---</td>
<td>Leistungskontakt (Erdung)</td>
<td>„Geräte anschließen“ > „Leistungskontakte/ Feldversorgung“</td>
</tr>
<tr>
<td>13</td>
<td>---</td>
<td>Service-Schnittstelle (Klappe geöffnet)</td>
<td>„Gerätebeschreibung“ > „Bedienelemente“</td>
</tr>
<tr>
<td>14</td>
<td>---</td>
<td>Verriegelungsscheibe</td>
<td>„Montieren“ > „Geräte einfügen und entfernen“</td>
</tr>
<tr>
<td>15</td>
<td>---</td>
<td>Feldbusanschluss RJ-45</td>
<td>„Gerätebeschreibung“ > „Anschlüsse“</td>
</tr>
</tbody>
</table>
4.2 Anschlüsse

4.2.1 Geräteeinspeisung

Die Versorgung wird über Klemmstellen mit CAGE CLAMP®-Anschluss eingespeist.

Das integrierte Netzteil erzeugt die erforderlichen Spannungen zur Versorgung der Elektronik und der angereihten Busklemmen.

Das Feldbus-Interface ist galvanisch von dem elektrischen Potential der Geräteelektronik getrennt.

Abbildung 22: Geräteeinspeisung

4.2.2 Feldbusanschluss

Der Anschluss an den Feldbus erfolgt über einen RJ-45-Steckverbinder, auch „Westernstecker“ genannt.

Die Beschaltung der RJ-45-Buchse ist entsprechend den Vorgaben für 100BaseTX.

Als Verbindungsleitung wird vom ETHERNET-Standard ein Twisted-Pair-Kabel der Kategorie 5e vorgeschrieben. Dabei können Leitungen des Typs S-UTP (Screened-Unshielded Twisted Pair) sowie STP (Shielded Twisted Pair) mit einer maximalen Segmentlänge von 100 m benutzt werden.

Die Anschlussstelle ist so konzipiert, dass nach Steckeranschluss ein Einbau in einen 80 mm hohen Schaltkasten möglich ist.
ACHTUNG

Nicht in Telekommunikationsnetzen einsetzen!

Abbildung 23: RJ-45-Stecker

Tabelle 13: Busanschluss und Steckerbelegung, RJ-45-Stecker

<table>
<thead>
<tr>
<th>Kontakt</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD + Transmit Data +</td>
</tr>
<tr>
<td>2</td>
<td>TD - Transmit Data -</td>
</tr>
<tr>
<td>3</td>
<td>RD + Receive Data +</td>
</tr>
<tr>
<td>4</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>5</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>6</td>
<td>RD - Receive Data -</td>
</tr>
<tr>
<td>7</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>8</td>
<td>nicht belegt</td>
</tr>
</tbody>
</table>
4.3 Anzeigeelemente

Der Betriebszustand des Feldbuscontrollers bzw. des Knoten wird über Leuchtmelder in Form von Leuchtdioden (LEDs) signalisiert. Diese sind zum Teil mehrfarbig (rot, grün oder rot/grün (=orange)) ausgeführt.

Abbildung 24: Anzeigeelemente (zwei Fertigungsvarianten)

Zur Diagnose der verschiedenen Bereiche für Feldbus, Knoten und Versorgungsspannung werden entsprechend drei Gruppen von LEDs unterschieden:

Tabelle 14: Anzeigeelemente Feldbusstatus

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>grün</td>
<td>zeigt eine einwandfreie Feldbus-Initialisierung an</td>
</tr>
<tr>
<td>LINK</td>
<td>grün</td>
<td>zeigt eine Verbindung zum physikalischen Netzwerk an</td>
</tr>
<tr>
<td>TxD/RxD</td>
<td>rot/grün/orange</td>
<td>zeigt das Stattfinden eines Datenaustausches an</td>
</tr>
<tr>
<td>ERROR</td>
<td>rot</td>
<td>zeigt einen Fehler auf dem Feldbus an</td>
</tr>
</tbody>
</table>

Tabelle 15: Anzeigeelemente Knotenstatus

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>rot/grün/orange</td>
<td>zeigt den Klemmenbusbetrieb an und signalisiert Fehler mittels Blinkcodes</td>
</tr>
<tr>
<td>USR</td>
<td>rot/grün/orange</td>
<td>zeigt, angesteuert aus dem Anwenderprogramm entsprechend der Visualisierungsprogrammierung, Informationen zu Klemmenbusfehlern an</td>
</tr>
</tbody>
</table>

Tabelle 16: Anzeigeelemente Versorgungsspannungsstatus

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>grün</td>
<td>zeigt den Status der Systemspannung an</td>
</tr>
<tr>
<td>B oder C</td>
<td>grün</td>
<td>zeigt den Status der Feldversorgungsspannung der Leistungskontakte an (diese LED kann sich fertigungsabhängig entweder an Position B oder C befinden)</td>
</tr>
</tbody>
</table>
Information

Weitere Informationen zu der LED-Signalisierung
Die detaillierte Beschreibung zur Auswertung der angezeigten LED-Zustände entnehmen Sie dem Kapitel „Diagnose“ > … > „LED-Signalisierung“.
4.4 Bedienelemente

4.4.1 Service-Schnittstelle

Die Service-Schnittstelle befindet sich hinter der Abdeckklappe.

Sie wird für die Kommunikation mit WAGO-I/O-CHECK, WAGO-I/O-PRO und zum Firmware-Download genutzt.

Abbildung 25: Service-Schnittstelle (geschlossene und geöffnete Klappe)

Tabelle 17: Legende zur Abbildung “Service-Schnittstelle (geschlossene und geöffnete Klappe)”

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geschlossene Klappe öffnen</td>
</tr>
<tr>
<td>2</td>
<td>Ansicht Service-Schnittstelle</td>
</tr>
</tbody>
</table>

ACHTUNG Gerät muss spannungsrfrei sein!

Um Geräteschäden zu vermeiden, ziehen und stecken Sie das Kommunikationskabel nur, wenn das Gerät spannungsfrei ist!

Der Anschluss an die 4-polige Stiftleiste unter der Abdeckklappe erfolgt über die Kommunikationskabel mit den Bestellnummern 750-920, 750-923 oder über den WAGO-Funkadapter mit der Bestellnummer 750-921.

4.4.2 Betriebsartenschalter

Der Betriebsartenschalter befindet sich hinter der Abdeckklappe.

Abbildung 26: Betriebsartenschalter (geschlossene und geöffnete Klappe der Service-Schnittstelle)
Tabelle 18: Legende zur Abbildung „Betriebsartenschalter“

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geschlossene Klappe öffnen</td>
</tr>
<tr>
<td>2</td>
<td>Betriebsartenschalter</td>
</tr>
</tbody>
</table>

ACHTUNG
Sachschäden durch gesetzte Ausgänge!

Hinweis
Vorprogrammieren der Ausgänge für Programmstopp!

Sie haben die Möglichkeit, das Verhalten des Feldbuscontrollers so zu programmieren, dass die Ausgänge bei Programmstopp in einen sicheren Zustand schalten. Dazu stellt WAGO-I/O-PRO mit `GET_STOP_VALUE` (Bibliothek „System.lib“) eine Funktion zur Verfügung, die zum Erkennen des letzten Zyklus vor dem „STOP“ dient.

Hinweis
Bei Software-Start/-Stopp Betriebsartenschalterstellung unerheblich!

Die Stellung des Betriebsartenschalters ist für das Starten und Stoppen der PFC-Applikation aus WAGO-I/O-PRO heraus unerheblich.

Je nachdem, in welcher der drei statischen Positionen „Oben“, „Mitte“ oder „Unten“ sich der Schalter bei einem PowerOn oder einem Hard- oder Software-Reset befindet, ist eine der folgenden Funktionen aktiv:

Tabelle 19: Betriebsartenschalterstellungen, statische Positionen bei PowerOn/Reset

<table>
<thead>
<tr>
<th>Stellung des Betriebsartenschalters</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position „Oben“</td>
<td>„RUN“ – Programmbearbeitung aktivieren, Boot-Projekt (wenn vorhanden) wird gestartet</td>
</tr>
<tr>
<td>Position „Mitte“</td>
<td>„STOP“ – Programmbearbeitung stoppen, PFC-Applikation wird angehalten</td>
</tr>
</tbody>
</table>

Wird während des laufenden Betriebs ein Stellungswechsel des Schalters vorgenommen, führt der Feldbuscontroller die folgenden Funktionen aus:
Tabelle 20: Betriebsartenschalterstellungen, dynamische Positionen im laufenden Betrieb

<table>
<thead>
<tr>
<th>Stellungswechsel des Betriebsartenschalters</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von mittlere in obere Position</td>
<td>„RUN“ – Programmbearbeitung aktivieren, Boot-Projekt (wenn vorhanden) wird gestartet.</td>
</tr>
<tr>
<td>Von untere in mittlere Position</td>
<td>Es erfolgt keine Reaktion.</td>
</tr>
</tbody>
</table>

Der Wechsel der Betriebsart erfolgt intern am Ende eines PFC-Zyklus.
4.5 Technische Daten

4.5.1 Gerätedaten

Tabelle 21: Technische Daten – Gerätedaten

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>51 mm</td>
</tr>
<tr>
<td>Höhe (ab Oberkante Tragschiene)</td>
<td>65 mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>100 mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>197 g</td>
</tr>
<tr>
<td>Schutzart</td>
<td>IP 20</td>
</tr>
</tbody>
</table>

4.5.2 Systemdaten

Tabelle 22: Technische Daten – Systemdaten

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Anzahl Busteilnehmer</td>
<td>Limitiert durch ETHERNET-Spezifikation</td>
</tr>
<tr>
<td>Übertragungsmedium</td>
<td>Twisted Pair S/UTP 100 Ω Cat 5</td>
</tr>
<tr>
<td>Busanschluss</td>
<td>RJ-45</td>
</tr>
<tr>
<td>Bussegmentlänge (_{\text{max}})</td>
<td>100 m zwischen Hub und Feldbuscontroller</td>
</tr>
<tr>
<td>Netzwerklänge (_{\text{max}})</td>
<td>Netzwerklänge durch ETHERNET Spezifikation limitiert</td>
</tr>
<tr>
<td>Übertragungsrate</td>
<td>10 Mbit/s</td>
</tr>
<tr>
<td>Protokolle</td>
<td>MODBUS/TCP (UDP), HTTP, BootP</td>
</tr>
<tr>
<td>Programmierung</td>
<td>WAGO-I/O-PRO CAA</td>
</tr>
<tr>
<td>IEC-61131-3</td>
<td>AWL, KOP, FUP, ST, AS</td>
</tr>
<tr>
<td>Max. Anzahl Socket-Verbindungen</td>
<td>1 HTTP, 4 MODBUS/TCP, 2 für IEC-61131-3-Programme, 2 für WAGO-I/O-PRO</td>
</tr>
<tr>
<td>Max. Anzahl Busklemmen</td>
<td>64</td>
</tr>
<tr>
<td>Programmspeicher</td>
<td>64 kByte</td>
</tr>
<tr>
<td>Datenspeicher</td>
<td>64 kByte</td>
</tr>
<tr>
<td>Remanentspeicher</td>
<td>8 kByte</td>
</tr>
</tbody>
</table>
4.5.3 Versorgung

Tabelle 23: Technische Daten – Versorgung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungsversorgung</td>
<td>DC 24 V (-25 % ... +30 %)</td>
</tr>
<tr>
<td>Eingangstrom_{max}</td>
<td>500 mA bei 24 V</td>
</tr>
<tr>
<td>Netzteilwirkungsgrad</td>
<td>87 %</td>
</tr>
<tr>
<td>Interne Stromaufnahme</td>
<td>200 mA bei 5 V</td>
</tr>
<tr>
<td>Summenstrom für Busklemmen</td>
<td>1800 mA bei 5 V</td>
</tr>
<tr>
<td>Potentialtrennung</td>
<td>500 V System/Versorgung</td>
</tr>
<tr>
<td>Spannung über Leistungskontakte</td>
<td>DC 24 V (-25 % ... +30 %)</td>
</tr>
<tr>
<td>Strom über Leistungskontakte_{max}</td>
<td>DC 10 A</td>
</tr>
</tbody>
</table>

4.5.4 Feldbus MODBUS/TCP

Tabelle 24: Technische Daten – Feldbus MODBUS/TCP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingangsprozessabbild_{max}</td>
<td>512 Byte</td>
</tr>
<tr>
<td>Ausgangsprozessabbild_{max}</td>
<td>512 Byte</td>
</tr>
<tr>
<td>EingangsvARIABLEN_{max}</td>
<td>512 Byte</td>
</tr>
<tr>
<td>AusgangsvARIABLEN_{max}</td>
<td>512 Byte</td>
</tr>
</tbody>
</table>

4.5.5 Zubehör

Tabelle 25: Technische Daten – Zubehör

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-WSB-Schnellbezeichnungssystem</td>
<td></td>
</tr>
<tr>
<td>WAGO-I/O-PRO CAA</td>
<td></td>
</tr>
</tbody>
</table>

4.5.6 Anschlusstechnik

Tabelle 26: Technische Daten – Verdrahtungsebene

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschlusstechnik</td>
<td>CAGE CLAMP®</td>
</tr>
<tr>
<td>Leiterquerschnitt</td>
<td>0.08 mm² … 2.5 mm², AWG 28 … 14</td>
</tr>
<tr>
<td>Abisolierlänge</td>
<td>8 mm … 9 mm / 0.33 in</td>
</tr>
</tbody>
</table>

Tabelle 27: Technische Daten – Leistungskontakte

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungskontakte</td>
<td>Federkontakt, selbstreinigend</td>
</tr>
<tr>
<td>Spannungsabfall bei I_{max}</td>
<td>< 1 V bei 64 Busklemmen</td>
</tr>
</tbody>
</table>

Tabelle 28: Technische Daten – Datenkontakte

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenkontakte</td>
<td>Gleitkontakte, hartvergoldet, selbstreinigend</td>
</tr>
</tbody>
</table>
4.5.7 **Klimatische Umweltbedingungen**

<table>
<thead>
<tr>
<th>Betriebstemperaturbereich</th>
<th>0 °C … 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagertemperaturbereich</td>
<td>−25 °C … +85 °C</td>
</tr>
<tr>
<td>Relative Feuchte (ohne Betauung)</td>
<td>max. 95 %</td>
</tr>
<tr>
<td>Beanspruchung durch Schadstoffe</td>
<td>gem. IEC 60068-2-42 und IEC 60068-2-43</td>
</tr>
<tr>
<td>Max. Schadstoffkonzentration bei einer relativen Feuchte < 75 %</td>
<td>SO₂ ≤ 25 ppm, H₂S ≤ 10 ppm</td>
</tr>
</tbody>
</table>

Besondere Bedingungen: Die Komponenten dürfen nicht ohne Zusatzmaßnahmen an Orten eingesetzt werden, an denen Staub, ätzende Dämpfe, Gase oder ionisierende Strahlung auftreten können.

4.5.8 **Mechanische Belastbarkeit gem. IEC 61131-2**

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Frequenzbereich</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60068-2-6 Vibration</td>
<td>5 Hz ≤ f < 9 Hz</td>
<td>1,75 mm Amplitude (dauerhaft)</td>
</tr>
<tr>
<td></td>
<td>3,5 mm Amplitude (kurzzeitig)</td>
<td></td>
</tr>
<tr>
<td>9 Hz ≤ f < 150 Hz</td>
<td>0,5 g (dauerhaft)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 g (kurzzeitig)</td>
<td></td>
</tr>
<tr>
<td>Anmerkung zur Vibrationsprüfung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Frequenzänderung: max. 1 Oktave/Minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Vibrationsrichtung: 3 Achsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-27 Stoß</td>
<td></td>
<td>15 g</td>
</tr>
<tr>
<td>Anmerkung zur Stoßprüfung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Art des Stoßes: Halbsinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Stoßdauer: 11 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Stoßrichtung: je 3 Stöße in positive und negative Richtung der 3 senkrecht zueinanderstehenden Achsen des Prüflings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-32 Freier Fall</td>
<td></td>
<td>1 m (Gerät in Originalverpackung)</td>
</tr>
</tbody>
</table>
4.6 Zulassungen

Weitere Informationen zu Zulassungen

Folgende Zulassungen wurden für den Feldbuskoppler/-controller 750-843 erteilt:

- Konformitätskennzeichnung
- CUL-US UL508

Folgende Ex-Zulassungen wurden für den Feldbuskoppler/-controller 750-843 erteilt:

- TÜV 07 ATEX 554086 X
- I M2 Ex d I Mb
- II 3 G Ex nA IIC T4 Gc
- II 3 D Ex tc IIIC T135°C Dc
- Zulässiger Umgebungstemperaturbereich: 0 °C ≤ T_a ≤ +60 °C
- IECEx TUN 09.0001 X
- Ex d I Mb
- Ex nA IIC T4 Gc
- Ex tc IIIC T135°C Dc
- Zulässiger Umgebungstemperaturbereich: 0 °C ≤ T_a ≤ +60 °C
- CUL-US ANSI/ISA 12.12.01
- Class I, Div2 ABCD T4

Folgende Schiffszulassungen wurden für den Feldbuskoppler/-controller 750-843 erteilt:

- ABS (American Bureau of Shipping)
- BSH (Bundesamt für Seeschifffahrt und Hydrographie)
- BV (Bureau Veritas)
DNV (Det Norske Veritas) Class B

GL (Germanischer Lloyd) Cat. A, B, C, D (EMC 1)

KR (Korean Register of Shipping)

LR (Lloyd’s Register) Env. 1, 2, 3, 4

NKK (Nippon Kaiji Kyokai)

PRS (Polski Rejestr Statków)

RINA (Registro Italiano Navale)
4.7 Normen und Richtlinien

Der Feldbuskoppler/-controller 750-843 erfüllt folgende EMV-Normen:

EMV CE-Störfestigkeit \(\text{gem. EN 61000-6-2: 2005}\)

EMV CE-Störaussendung \(\text{gem. EN 61000-6-3: 2007}\)

Der Feldbuskoppler/-controller 750-843 erfüllt die Anforderungen an Störaussendung im Wohnbereich.
5 Montieren

5.1 Einbaulage

Neben dem horizontalen und vertikalen Einbau sind alle anderen Einbaulagen erlaubt.

<table>
<thead>
<tr>
<th>Hinweis</th>
<th>Bei vertikalem Einbau Endklammer verwenden!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montieren Sie beim vertikalen Einbau zusätzlich unterhalb des Feldbusknotens eine Endklammer, um den Feldbusknoten gegen Abrutschen zu sichern.</td>
<td></td>
</tr>
<tr>
<td>WAGO-Bestellnummer 249-116 Endklammer für TS 35, 6 mm breit</td>
<td></td>
</tr>
<tr>
<td>WAGO-Bestellnummer 249-117 Endklammer für TS 35, 10 mm breit</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Gesamtaufbau

Die maximale Gesamtausdehnung eines Feldbusknotens ohne Feldbuskoppler/-controller beträgt 780 mm inklusive Endklemme. Die Breite der Endklemme beträgt 12 mm. Die übrigen Busklemmen verteilen sich also auf einer Länge von maximal 768 mm.

Beispiele:

- An einen Feldbuskoppler/-controller können 64 Ein- und Ausgangsbusklemmen der Breite 12 mm gesteckt werden.
- An einen Feldbuskoppler/-controller können 32 Ein- und Ausgangsbusklemmen der Breite 24 mm gesteckt werden.

Ausnahme:

Die Anzahl der gesteckten Busklemmen hängt außerdem vom jeweiligen Feldbuskoppler/-controller ab, an dem sie betrieben werden. Beispielsweise beträgt die maximale Anzahl der anreihbaren Busklemmen an einem PROFIBUS-DP/V1-Feldbuskoppler/-controller 63 Busklemmen ohne passive Busklemmen und Endklemme.

ACHTUNG Maximale Gesamtausdehnung eines Feldbusknotens beachten!

Die maximale Gesamtausdehnung eines Feldbusknotens ohne Feldbuskoppler/-controller und ohne die Nutzung einer Busklemme 750-628 (Kopplerklemme zur Klemmenbusverlängerung) darf eine Länge von 780 mm nicht überschreiten. Beachten Sie zudem Einschränkungen einzelner Feldbuskoppler/-controller.
Hinweis

Gesamtausdehnung mit Kopplerklemme zur Klemmenbusverlängerung erhöhen!

Mit der Busklemme 750-628 (Kopplerklemme zur Klemmenbusverlängerung) können Sie die Gesamtausdehnung eines Feldbusknotens erhöhen. Bei einem solchen Aufbau stecken Sie nach der letzten Busklemme eines Klemmenblocks eine Busklemme 750-627 (Endklemme zur Klemmenbusverlängerung. Diese verbinden Sie per RJ-45-Patch-Kabel mit der Kopplerklemme zur Klemmenbusverlängerung eines weiteren Klemmenblocks.

So können Sie mit maximal 10 Busklemmen zur Klemmenbusverlängerung einen Feldbusknoten mechanisch in maximal 11 Blöcke aufteilen.

Die zulässige Kabellänge zwischen zwei Blöcken beträgt 5 Meter.

Weitere Informationen finden Sie in den Handbüchern der Busklemmen 750-627 und 750-628.)
5.3 Montage auf Tragschiene

5.3.1 Tragschieneneigenschaften

Alle Komponenten des Systems können direkt auf eine Tragschiene gemäß EN 50022 (TS 35, DIN Rail 35) aufgerastet werden.

ACHTUNG

Ohne Freigabe keine WAGO-fremden Tragschienen verwenden!

WAGO liefert normkonforme Tragschienen, die optimal für den Einsatz mit dem WAGO-I/O-SYSTEM geeignet sind. Sollten Sie andere Tragschienen einsetzen, muss eine technische Untersuchung und eine Freigabe durch WAGO Kontakttechnik GmbH & Co. KG vorgenommen werden.

Tragschienen weisen unterschiedliche mechanische und elektrische Merkmale auf. Für den optimalen Aufbau des Systems auf einer Tragschiene sind Randbedingungen zu beachten:

• Das Material muss korrosionsbeständig sein.

• Die meisten Komponenten besitzen zur Ableitung von elektromagnetischen Einflüssen einen Ableitkontakt zur Tragschiene. Um Korrosionseinflüssen vorzubeugen, darf dieser verzinnte Tragschienckontakt mit dem Material der Tragschiene kein galvanisches Element bilden, das eine Differenzspannung über 0,5 V (Kochsalzlösung von 0,3 % bei 20 °C) erzeugt.

• Die Tragschiene muss die im System integrierten EMV-Maßnahmen und die Schirmung über die Busklemmenanschlüsse optimal unterstützen.

• Eine ausreichend stabile Tragschiene ist auszuwählen und ggf. mehrere Montagepunkte (alle 20 cm) für die Tragschiene zu nutzen, um Durchbiegen und Verdrehung (Torsion) zu verhindern.

• Die Geometrie der Tragschiene darf nicht verändert werden, um den sicheren Halt der Komponenten sicherzustellen. Insbesondere beim Kürzen und Montieren darf die Tragschiene nicht gequetscht oder gebogen werden.

• Der Rastfuß der Komponenten reicht in das Profil der Tragschiene hinein. Bei Tragschienen mit einer Höhe von 7,5 mm sind Montagepunkte (Verschraubungen) unter dem Knoten in der Tragschiene zu versenken (Senkkopfschrauben oder Blindnieten).

• Die Metallfedern auf der Gehäuseunterseite müssen einen niederimpedanten Kontakt zur Tragschiene haben (möglichst breitflächige Auflage).
5.3.2 WAGO-Tragschienen

Die WAGO-Tragschienen erfüllen die elektrischen und mechanischen Anforderungen.

<table>
<thead>
<tr>
<th>Bestellnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-113 /-112</td>
<td>35 x 7,5; 1 mm Stahl gelb chromatiert; gelocht/ungelocht</td>
</tr>
<tr>
<td>210-114 /-197</td>
<td>35 x 15; 1,5 mm Stahl gelb chromatiert; gelocht/ungelocht</td>
</tr>
<tr>
<td>210-118</td>
<td>35 x 15; 2,3 mm Stahl gelb chromatiert; ungelocht</td>
</tr>
<tr>
<td>210-198</td>
<td>35 x 15; 2,3 mm Kupfer; ungelocht</td>
</tr>
<tr>
<td>210-196</td>
<td>35 x 7,5; 1 mm Aluminium; ungelocht</td>
</tr>
</tbody>
</table>

5.4 Abstände

Für den gesamten Feldbusknoten sind Abstände zu benachbarten Komponenten, Kabelkanälen und Gehäuse-/Rahmenwänden einzuhalten.

5.5 Montagereihenfolge

Feldbuskoppler/-controller und Busklemmen des WAGO-I/O-SYSTEMs 750/753 werden direkt auf eine Tragschiene gemäß EN 50022 (TS 35) aufgerastet.

Beginnend mit dem Feldbuskoppler/-controller werden die Busklemmen entsprechend der Projektierung aneinandergereiht. Fehler bei der Projektierung des Knotens bezüglich der Potentialgruppen (Verbindungen über die Leistungskontakte) werden erkannt, da Busklemmen mit Leistungskontakten (Messerkontakte) nicht an Busklemmen angereiht werden können, die weniger Leistungskontakte besitzen.

VORSICHT

Verletzungsgefahr durch scharfkantige Messerkontakte!

Da die Messerkontakte sehr scharfkantig sind, besteht bei unvorsichtiger Hantierung mit den Busklemmen Verletzungsgefahr.

ACHTUNG

Busklemmen nur in vorgesehener Reihenfolge stecken!

Hinweis

Busabschluss nicht vergessen!

Stecken Sie immer eine Busendklemme 750-600 an das Ende des Feldbusknotens! Die Busendklemme muss in allen Feldbusknoten mit Feldbuskopplern/-controllern des WAGO-I/O-SYSTEMs 750 eingesetzt werden, um eine ordnungsgemäße Datenübertragung zu garantieren!
5.6 Geräte einfügen und entfernen

ACHTUNG

Arbeiten an Geräten nur spannungsfrei durchführen!
Arbeiten unter Spannung können zu Schäden an den Geräten führen.
Schalten Sie daher die Spannungsversorgung ab, bevor Sie an den Geräten arbeiten.
5.6.1 Feldbuskoppler/-controller einfügen

1. Wenn Sie den Feldbuskoppler/-controller gegen einen bereits vorhandenen Feldbuskoppler/-controller austauschen, positionieren Sie den neuen Feldbuskoppler/-controller so, dass Nut und Feder zur nachfolgenden Busklemme verbunden sind.

2. Rasten Sie den Feldbuskoppler/-controller auf die Tragschiene auf.

3. Drehen Sie die Verriegelungsscheibe mit einer Schraubendreherklinge, bis die Nase der Verriegelungsscheibe hinter der Tragschiene einrastet (siehe nachfolgende Abbildung). Damit ist der Feldbuskoppler/-controller auf der Tragschiene gegen Verkanten gesichert.

Mit dem Einrasten des Feldbuskopplers/-controllers sind die elektrischen Verbindungen der Datenkontakte und (soweit vorhanden) der Leistungskontakte zur gegebenenfalls nachfolgenden Busklemme hergestellt.

Abbildung 28: Verriegelung Standard-Feldbuskoppler/-controller (Beispiel)

5.6.2 Feldbuskoppler/-controller entfernen

1. Drehen Sie die Verriegelungsscheibe mit einer Schraubendreherklinge, bis die Nase der Verriegelungsscheibe nicht mehr hinter der Tragschiene eingerastet ist.

2. Ziehen Sie den Feldbuskoppler/-controller an der Entriegelungslasche aus dem Verbund.

Mit dem Herausziehen des Feldbuskopplers/-controllers sind die elektrischen Verbindungen der Datenkontakte bzw. Leistungskontakte zu nachfolgenden Busklemmen wieder getrennt.
5.6.3 Busklemme einfügen

1. Positionieren Sie die Busklemme so, dass Nut und Feder zum Feldbuskoppler/-controller oder zur vorhergehenden und gegebenenfalls zur nachfolgenden Busklemme verbunden sind.

 Bild 29: Busklemme einsetzen (Beispiel)

2. Drücken Sie die Busklemme in den Verbund, bis die Busklemme auf der Tragschiene einrastet.

 Bild 30: Busklemme einrasten (Beispiel)

Mit dem Einrasten der Busklemme sind die elektrischen Verbindungen der Datenkontakte und (soweit vorhanden) der Leistungskontakte zum Feldbuskoppler/-controller oder zur vorhergehenden und gegebenenfalls zur nachfolgenden Busklemme hergestellt.
5.6.4 Busklemme entfernen

1. Ziehen Sie die Busklemme an der Entriegelungslaßche aus dem Verbund.

Abbildung 31: Busklemme entfernen (Beispiel)

Mit dem Herausziehen der Busklemme sind die elektrischen Verbindungen der Datenkontakte bzw. Leistungskontakte wieder getrennt.
6 Geräte anschließen

6.1 Datenkontakte/Klemmenbus

Die Kommunikation zwischen Feldbuskoppler/-controller und Busklemmen sowie die Systemversorgung der Busklemmen erfolgt über den Klemmenbus. Er besteht aus 6 Datenkontakten, die als selbstreinigende Goldfederkontakte ausgeführt sind.

Abbildung 32: Datenkontakte

ACHTUNG
Busklemmen nicht auf Goldfederkontakte legen!
Um Verschmutzung und Kratzer zu vermeiden, legen Sie die Busklemmen nicht auf die Goldfederkontakte.

ESD
Auf gute Erdung der Umgebung achten!
6.2 Leistungskontakte/Feldversorgung

VORSICHT Verletzungsgefahr durch scharfkantige Messerkontakte!
Da die Messerkontakte sehr scharfkantig sind, besteht bei unvorsichtiger Hantierung mit den Busklemmen Verletzungsgefahr.

Auf der rechten Seite der meisten Feldbuskoppler/-controller und einiger Busklemmen befinden sich selbstreinigende Leistungskontakte.
Die Leistungskontakte leiten die Versorgungsspannung für die Feldseite weiter.
Die Kontakte sind berührungssicher als Federkontakte ausgeführt.
Als Gegenstück sind auf der linken Seite der Busklemmen entsprechende Messerkontakte vorhanden.

Abbildung 33: Beispiele für die Anordnung von Leistungskontakten

Hinweis Feldbusknoten mit smartDESIGNER konfigurieren und überprüfen
Sie können mit der WAGO-ProServe®-Software smartDESIGNER den Aufbau eines Feldbusknotens konfigurieren. Über die integrierte Plausibilitätsprüfung können Sie die Konfiguration überprüfen.
6.3 Leiter an CAGE CLAMP® anschließen

CAGE CLAMP®-Anschlüsse von WAGO sind für ein-, mehr- oder feindrahtige Leiter ausgelegt.

Hinweis

Nur einen Leiter pro CAGE CLAMP® anschließen!

Sie dürfen an jedem CAGE CLAMP®-Anschluss nur einen Leiter anschließen. Mehrere einzelne Leiter an einem Anschluss sind nicht zulässig.

Müssen mehrere Leiter auf einen Anschluss gelegt werden, verbinden Sie diese in einer vorgelagerten Verdrahtung, z. B. mit WAGO-Durchgangsklemmen.

Ausnahme:

Sollte es unvermeidbar sein, zwei mehr- oder feindrahtige Leiter an einem CAGE CLAMP®-Anschluss anzuschließen, müssen Sie eine gemeinsame Aderendhülse verwenden. Folgende Aderendhülsen sind einsetzbar:

- Länge: 8 mm
- Nennquerschnitt max.: 1 mm² für zwei mehr- oder feindrahtige Leiter mit je 0,5 mm²
- WAGO-Produkt: 216-103 oder Produkte mit gleichen Eigenschaften.

1. Zum Öffnen der CAGE CLAMP® führen Sie das Betätigungswerkzeug in die Öffnung oberhalb des Anschlusses ein.
2. Führen Sie den Leiter in die entsprechende Anschlussöffnung ein.

Abbildung 34: Leiter an CAGE CLAMP® anschließen
7 Funktionsbeschreibung

7.1 Betriebssystem

7.1.1 Anlauf des Feldbuscontrollers

Nach Einschalten der Versorgungsspannung oder nach Hardware-Reset startet der Feldbuscontroller.

Das intern vorhandene PFC-Programm wird ins RAM übertragen.

In der Initialisierungsphase ermittelt der Feldbuscontroller die Busklemmen und die vorliegende Konfiguration und setzt die Variablen auf 0 bzw. auf FALSE oder auf einen von dem PFC-Programm vorgegebenen Initialwert.

Die Merker behalten ihren Zustand bei.

Während dieser Phase blinkt die I/O-LED rot.

Nach fehlerfreiem Anlauf leuchtet die I/O-LED grün.

7.1.2 PFC-Zyklus

Nach fehlerfreiem Anlauf startet der PFC-Zyklus bei oberer Stellung des Betriebsartenschalters oder durch einen Start-Befehl aus WAGO-I/O-PRO.

Der Zyklus beginnt erneut mit dem Einlesen der Ein- und Ausgangsdaten und der Werte von Zeitgebern.

Der Wechsel der Betriebsart (STOP/RUN) erfolgt am Ende eines PFC-Zyklus.

Die Zykluszeit ist die Zeit vom Beginn des PFC-Programms bis zum nächsten Beginn. Wenn innerhalb eines PFC-Programms eine Schleife programmiert wird, verlängert sich entsprechend die PFC-Laufzeit und somit der PFC-Zyklus.

Abbildung 35: Anlauf des Feldbuscontrollers
7.2 Prozessdatenaufbau

7.2.1 Prinzipieller Aufbau

Nach dem Einschalten erkennt der Feldbuscontroller alle im Knoten gesteckten Busklemmen, die Daten liefern bzw. erwarten (Datenbreite/Bitbreite > 0). In einem Knoten können analoge und digitale Busklemmen gemischt angeordnet sein.

Information

Weitere Information

Die Daten der digitalen Busklemmen sind bitorientiert, d. h. der Datenaustausch erfolgt bitweise. Die analogen Busklemmen stehen stellvertretend für alle byteorientierten Busklemmen, bei denen der Datenaustausch also byteweise erfolgt.

Zu diesen Busklemmen gehören z. B. die Zählerklemmen, Busklemmen für Winkel- und Wegmessung sowie die Kommunikationsklemmen.

Für das lokale Ein- und Ausgangsprozessabbild werden die Daten der Busklemmen abhängig von der Reihenfolge ihrer Position am Feldbuscontroller in dem jeweiligen Prozessabbild abgelegt.

Hinweis

Hardware-Änderung kann Änderung des Prozessabbildes bewirken!

Für das Prozessabbild der physikalischen Ein- und Ausgangsdaten steht in dem Controller zunächst jeweils ein Speicherbereich von 256 Worten (Wort 0...255) zur Verfügung.

Für die Abbildung der MODBUS/PFC-Variablen ist der Speicherbereich von jeweils Wort 256...511 reserviert, so dass die MODBUS/PFC-Variablen hinter dem Prozessabbild der Busklemmendaten abgebildet werden.

Ist die Anzahl der Klemmendaten größer als 256 Worte, werden alle darüber hinausreichenden physikalischen Ein- und Ausgangsdaten in einem Speicherbereich an das Ende des bisherigen Prozessabbildes und somit hinten an die MODBUS/PFC-Variablen angehängt (Wort 512...1275).
Im Anschluss an die restlichen physikalischen Busklemmendaten werden die EtherNet/IP PFC-Variablen abgebildet. Dieser Speicherbereich umfasst Wort 1276...1531.

Für zukünftige Protokoll-Erweiterungen ist der anschließende Bereich ab Wort 1532 für die weiteren PFC-Variablen reserviert.

Bei allen WAGO-Feldbuscontrollern ist der Zugriff der SPS auf die Prozessdaten unabhängig von dem Feldbussystem. Dieser Zugriff erfolgt stets über ein anwendungsbezogenes IEC-61131-3-Programm.
Der Zugriff von der Feldbusseite aus ist dagegen feldbusspezifisch.

Für den Feldbuscontroller kann ein MODBUS/TCP-Master über implementierte MODBUS-Funktionen auf die Daten zugreifen, wobei dezimale, bzw. hexadezimale MODBUS-Adressen verwendet werden.

Information

Weitere Information
Eine detaillierte Beschreibung zu diesen feldbusspezifischen Datenzugriffen finden Sie in dem Kapitel „MODBUS-Funktionen“.

Information

Weitere Information
Das feldbusspezifische Prozessabbild ist in den Kapiteln „Busklemmen“ > … > „Aufbau der Prozessdaten…“ für jede WAGO-Busklemme im Einzelnen dargestellt.
7.2.2 Beispiel für ein Eingangsprozessabbild

Im folgenden Bild wird ein Beispiel für ein Prozessabbild mit Eingangsklemmen-daten dargestellt.

Die Konfiguration besteht aus 16 digitalen und 8 analogen Eingängen.
Das Eingangsprozessabbild hat damit eine Datenlänge von 8 Worten für die analogen Busklemmen und 1 Wort für die digitalen, also insgesamt 9 Worte.

Abbildung 36: Beispiel Eingangsprozessabbild
7.2.3 Beispiel für ein Ausgangsprozessabbild

Als Beispiel für das Prozessabbild mit Ausgangsklemmendaten besteht die folgende Konfiguration aus 2 digitalen und 4 analogen Ausgängen.
Das Ausgangsdaten Prozessabbild besteht aus 4 Worten für die analogen und einem Wort für die digitalen Ausgängen, also insgesamt aus 5 Worten.

Zusätzlich können die Ausgangsdaten mit einem auf die MODBUS-Adresse aufaddierten Offset von 200\text{hex} (0x0200) zurückgelesen werden.

Hinweis Daten > 256 Worte sind mittels aufaddiertem Offset rücklesbar!
Alle Ausgangsdaten, die über 256 Worte hinausreichen und sich deshalb im Speicherbereich 6000\text{hex} (0x6000) bis 66F9\text{hex} (0x66F9) befinden, können mit einem auf die MODBUS-Adresse aufaddierten Offset von 1000\text{hex} (0x1000) zurückgelesen werden.

Abbildung 37: Beispiel Ausgangsprozessabbild
7.2.4 Prozessdaten MODBUS/TCP

Der Aufbau der Prozessdaten ist auf der Feldebene bei einigen Busklemmen bzw. deren Varianten feldbusspezifisch.

Bei Feldbuscontrollern, die MODBUS unterstützen, wird das Prozessabbild wortweise aufgebaut (mit word-alignment). Die interne Darstellung der Daten, die größer als ein Byte sind, erfolgt nach dem Intel-Format.

Information

Weitere Information zu dem feldbusspezifischen Prozessdatenaufbau
Der entsprechende feldbusspezifische Aufbau der Prozesswerte aller Busklemmen des WAGO-I/O-SYSTEMs 750 und 753 finden Sie in dem Kapitel “Aufbau der Prozessdaten für MODBUS/TCP”.

7.3 Datenaustausch

Der Austausch der Prozessdaten findet bei dem Feldbuscontroller 750-843 entweder über das MODBUS/TCP- oder über das MODBUS/UDP-Protokoll statt.

MODBUS/TCP arbeitet nach dem Master-/Slave-Prinzip. Der Master ist eine übergeordnete Steuerung, z. B. ein PC oder eine Speicherprogrammierbare Steuerung.

Die Feldbuscontroller des WAGO-I/O-SYSTEMs 750 sind in der Regel Slave-Geräte. Durch die Programmierung mit IEC 61131-3 können aber auch Controller zusätzlich die Master-Funktion übernehmen.

Der Master fordert die Kommunikation an. Diese Anforderung kann durch die Adressierung an einen bestimmten Knoten gerichtet sein. Die Knoten empfangen die Anforderung und senden, abhängig von der Art der Anforderung, eine Antwort an den Master.

Ein Feldbuscontroller kann eine bestimmte Anzahl gleichzeitiger Verbindungen (Socket-Verbindungen) zu anderen Netzwerkteilnehmern herstellen:

- 1 Verbindung für HTTP (HTML-Seiten von dem Controller lesen)
- 4 Verbindungen über MODBUS/TCP (Ein- und Ausgangsdaten vom Controller lesen oder schreiben)
- 2 Verbindungen über den Feldbuscontroller (verfügbar in der SPS-Funktionalität für IEC 61131-3 Applikationsprogramme)
- 2 Verbindungen für WAGO-I/O-PRO
 (Diese Verbindungen sind reserviert für das Debuggen des Applikationsprogramms über ETHERNET. WAGO-I/O-PRO benötigt für das Debuggen 2 Verbindungen zur selben Zeit. Es kann jedoch nur ein Programmiertool Zugriff auf den Controller haben.)

Die maximale Anzahl der gleichzeitigen Verbindungen kann nicht überschritten werden. Sollen weitere Verbindungen aufgebaut werden, müssen bestehende Verbindungen vorher beendet werden.

Für den Austausch von Daten besitzt der Feldbuscontroller im Wesentlichen drei Schnittstellen:

- die Schnittstelle zum Feldbus (Feldbusmaster)
- die SPS-Funktionalität des Feldbuscontrollers (CPU)
- die Schnittstelle zu den Busklemmen

Ein Datenaustausch findet statt zwischen:

- dem Feldbusmaster und den Busklemmen,
- der SPS-Funktionalität des Feldbuscontrollers (CPU) und den Busklemmen
- dem Feldbusmaster und der SPS-Funktionalität des PFCs (CPU)
Wird der Feldbus MODBUS genutzt, greift der MODBUS-Master über die in dem Controller implementierten MODBUS-Funktionen auf Daten zu.

Der Zugriff des Feldbuscontrollers auf die Daten erfolgt mit Hilfe eines IEC-61131-3-Applikationsprogramms. Die Adressierung der Daten ist dabei jeweils sehr unterschiedlich.

7.3.1 Speicherbereiche

Abbildung 38: Speicherbereiche und Datenaustausch

Das Prozessabbild des Feldbuscontrollers enthält in dem Speicherbereich Wort 0 ... 255 die physikalischen Daten der Busklemmen.

1. Von der CPU und von der Feldbusseite können die Eingangsklemmendaten gelesen werden.
2. Ebenso kann von Seite der CPU und Feldbusseite auf die Ausgangsklemmen geschrieben werden. Bei gleichzeitigem Schreiben auf einen Ausgang wird der Wert des Masters auf den Ausgang ausgegeben.

In dem Speicherbereich Wort 256 ... 511 des Prozessabbildes sind die PFC-Variablen abgelegt.

3. Von der Feldbusseite werden die PFC-Eingangsvariablen in den Eingangs Speicherbereich geschrieben und von der CPU zur Verarbeitung eingelesen.
Zusätzlich sind alle Ausgangsdaten auf einen Speicherbereich mit dem Adressen-Offset 0x0200 bzw. 0x1000 gespiegelt. Dadurch ist es möglich, durch Addieren von 0x0200 bzw. 0x1000 zu der MODBUS-Adresse Ausgangswerte zurückzulesen.

Im Feldbuscontroller 750-843 sind darüber hinaus weitere Speicherbereiche vorhanden, auf welche teilweise von der Feldbusseite aus jedoch nicht zugegriffen werden kann:

- **Datenspeicher (64 kByte)**
 Der Datenspeicher ist ein flüchtiger RAM-Speicher und dient zum Anlegen von Variablen, die nicht zur Kommunikation mit den Schnittstellen sondern für interne Verarbeitungen, wie z. B. die Berechnung von Ergebnissen benötigt werden.

- **Programmspeicher (64 kByte)**

- **NOVRAM Remanentspeicher (8 kByte)**
 Der Remanentspeicher ist ein nicht flüchtiger Speicher, d. h. nach einem Spannungsausfall bleiben alle Werte der Merker und Variablen beibehalten, die explizit mit „var retain“ definiert werden. Die Speicherverwaltung erfolgt automatisch. Der 8 kByte große Speicherbereich wird gemeinsam für Merker- und Retain-Variablen genutzt.

Hinweis **Merker nur unter „var retain“ remanent!**
Beachten Sie, dass die Merker nur remanent sind, wenn Sie diese unter „var retain“ deklariert haben.
Die Aufteilung des NOVRAM Remanentspeichers ist variabel (siehe nachfolgenden Hinweis).

Hinweis

NOVRAM-Speicheraufteilung in WAGO-I/O-PRO CAA änderbar!

Behalten Sie die Standardwerte bei, überlappen sich Merker- und Retain-Bereich. Je nach Deklaration im Programm wird der Bereich dann für Merker- oder Retain-Variablen genutzt. Um eine Überlappung der Bereiche auszuschließen, können Sie als Retain-Startadresse z. B. 16#102000 festlegen. In diesem Fall werden zunächst die Merker (ab 16#100000) und anschließend die Retain-Variablen (ab 16#102000) hintereinander abgelegt.

Abbildung 39: Beispieldeklarierung für remanente Merker unter „var retain“
7.3.2 Addressierung

Ein- und Ausgänge der Busklemmen an einem Feldbuscontroller werden intern adressiert, sobald sie in Betrieb genommen werden. Die Reihenfolge, in welcher die gesteckten Busklemmen adressiert werden, hängt von der Art der Busklemme (Eingangsklemme, Ausgangsklemme etc.) ab. Aus diesen Adressen baut sich das Prozessabbild zusammen.

Hinweis

Verschiedene Möglichkeiten zur Adressierung der Busklemmen nutzen!

In diesem Kapitel wird die Adressierung und interne Funktionsweise eines Feldbuscontrollers mit gesteckten Busklemmen näher erläutert. Ein Verständnis der Zusammenhänge ist wichtig, wenn Sie Adressen konventionell über Auszählen zuweisen möchten.

Eine nähere Beschreibung lesen Sie in Kapitel „PFC mit WAGO-I/O-PRO programmieren“ > … > „Feldbuscontroller mit dem I/O-Konfigurator konfigurieren“.
7.3.2.1 Adressierung der Busklemmen

Bei der Adressierung werden zunächst die komplexen Busklemmen (Busklemmen, die ein oder mehrere Byte belegen) entsprechend ihrer physikalischen Reihenfolge hinter dem Feldbuskoppler/-controller berücksichtigt. Diese belegen somit die Adressen ab Wort 0.

Im Anschluss daran folgen, immer in Bytes zusammengefasst, die Daten der übrigen Busklemmen (Busklemmen, die weniger als ein Byte belegen). Dabei wird entsprechend der physikalischen Reihenfolge Byte für Byte mit diesen Daten aufgefüllt. Sobald ein ganzes Byte durch die bitorientierten Busklemmen belegt ist, wird automatisch das nächste Byte begonnen.

Hinweis

Hardware-Änderung kann Änderung des Prozessabbildes bewirken!
Wenn die Hardware-Konfiguration geändert bzw. erweitert wird, kann sich daraus ein neuer Aufbau des Prozessabbildes ergeben. Damit ändern sich dann auch die Adressen der Prozessdaten. Bei einer Erweiterung sind die Prozessdaten aller vorherigen Busklemmen zu berücksichtigen.

Hinweis

Prozessdatenanzahl beachten!
Entnehmen Sie die Anzahl der Ein- und Ausgangsbits bzw. -bytes für die einzelnen angeschalteten Busklemmen den entsprechenden Beschreibungen der Busklemmen.

<table>
<thead>
<tr>
<th>Tabelle 32: Datenbreite der Busklemmen (Beispiele)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbreite ≥ 1 Wort/Kanal</td>
</tr>
<tr>
<td>Analogeingangsklemmen</td>
</tr>
<tr>
<td>Analogausgangsklemmen</td>
</tr>
<tr>
<td>Eingangsklemmen für Thermoelemente</td>
</tr>
<tr>
<td>Eingangsklemmen für Widerstandssensoren</td>
</tr>
<tr>
<td>Pulsweitenausgangsklemmen</td>
</tr>
<tr>
<td>Schnittstellenklemmen</td>
</tr>
<tr>
<td>Vor-/Rückwärtszähler</td>
</tr>
<tr>
<td>Busklemmen für Winkel- und Wegmessung</td>
</tr>
</tbody>
</table>
7.3.2.2 IEC-61131-3-Adressräume

IEC-61131-3-Adressräume in der Übersicht:

Tabelle 33: IEC-61131-3-Adressräume

<table>
<thead>
<tr>
<th>Adressraum</th>
<th>MODBUS-Zugriff</th>
<th>SPS-Zugriff</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>phys. Eingänge</td>
<td>read</td>
<td>read</td>
<td>Physikalische Eingänge (%IW0...%IW255)</td>
</tr>
<tr>
<td>phys. Ausgänge</td>
<td>read/write</td>
<td></td>
<td>Physikalische Ausgänge (%QW0...%QW255)</td>
</tr>
<tr>
<td>MODBUS/TCP PFC-IN-Variablen</td>
<td>read/write</td>
<td>read</td>
<td>Flüchtige SPS-Eingangsvariablen (%IW256...%IW511)</td>
</tr>
<tr>
<td>MODBUS/TCP PFC-OUT-Variablen</td>
<td>read</td>
<td>read/write</td>
<td>Flüchtige SPS-Ausgangsvariablen (%QW256...%QW511)</td>
</tr>
<tr>
<td>Konfigurationsregister</td>
<td>read/write</td>
<td>-</td>
<td>siehe Kapitel „MODBUS-Funktionen \rightarrow MODBUS-Register \rightarrow Konfigurationsregister“</td>
</tr>
<tr>
<td>Firmware-Register</td>
<td>read</td>
<td>-</td>
<td>siehe Kapitel „MODBUS-Funktionen \rightarrow MODBUS-Register \rightarrow Firmware-Informationsregister“</td>
</tr>
<tr>
<td>Retain-Variablen</td>
<td>read/write</td>
<td>read/write</td>
<td>Remanent-Speicher (%MW0...%MW4095)</td>
</tr>
</tbody>
</table>

7.3.2.3 Absolute Adressierung

Die direkte Darstellung einzelner Speicherzellen (absolute Adressen) nach IEC 61131-3 erfolgt mittels spezieller Zeichenketten:

Tabelle 34: Absolute Adressen

<table>
<thead>
<tr>
<th>Position</th>
<th>Zeichen</th>
<th>Benennung</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>%</td>
<td>Leitet absolute Adresse ein</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>Eingang</td>
<td>Eingang</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>Ausgang</td>
<td>Ausgang</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>Merker</td>
<td>Merker</td>
</tr>
<tr>
<td>3</td>
<td>X*</td>
<td>Einzelbit</td>
<td>Datenbreite</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Byte (8 Bits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Word (16 Bits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Doubleword (32 Bits)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Adresse</td>
<td></td>
</tr>
</tbody>
</table>

* Das Kennzeichen ‘X’ für Bits kann entfallen

Hinweis

Zeichenketten ohne Leer- und Sonderzeichen eingeben!
Die Zeichenketten der absoluten Adressen sind zusammenhängend, d. h. ohne Leerzeichen oder Sonderzeichen einzugeben!
Beispieladressierungen:

Tabelle 35: Beispieladressierung

<table>
<thead>
<tr>
<th>Eingänge</th>
<th>Bit</th>
<th>%IX14.0 ... 15</th>
<th>%IX15.0 ... 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>%IB28</td>
<td>%IB29</td>
<td>%IB30</td>
</tr>
<tr>
<td>Wort</td>
<td>%IW14</td>
<td>%IW15</td>
<td></td>
</tr>
<tr>
<td>Doppelwort</td>
<td></td>
<td></td>
<td>%ID7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgänge</th>
<th>Bit</th>
<th>%QX5.0 ... 15</th>
<th>%QX6.0 ... 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>%QB10</td>
<td>%QB11</td>
<td>%QB12</td>
</tr>
<tr>
<td>Wort</td>
<td>%QW5</td>
<td>%QW6</td>
<td></td>
</tr>
<tr>
<td>Doppelwort</td>
<td>%QD2 (oberer Teil)</td>
<td>%QD3 (unterer Teil)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Merker</th>
<th>Bit</th>
<th>%MX11.0 ... 15</th>
<th>%MX12.0 ... 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>%MB22</td>
<td>%MB23</td>
<td>%MB24</td>
</tr>
<tr>
<td>Wort</td>
<td>%MW11</td>
<td></td>
<td>%MW12</td>
</tr>
<tr>
<td>Doppelwort</td>
<td>%MD5 (oberer Teil)</td>
<td>%MD6 (unterer Teil)</td>
<td></td>
</tr>
</tbody>
</table>

Adressen berechnen (in Abhängigkeit von der Wortadresse):

- **Bit-Adresse:** Wortadresse .0 bis .15
- **Byte-Adresse:** 1. Byte: 2 x Wortadresse
 2. Byte: 2 x Wortadresse + 1
- **DWORD-Adresse:** Wortadresse (gerade Zahl) / 2
 bzw. Wortadresse (ungerade Zahl) / 2, abgerundet
7.3.3 Datenaustausch MODBUS/TCP-Master und Busklemmen

Der Datenaustausch zwischen MODBUS/TCP-Master und den Busklemmen erfolgt über die in dem Feldbuskoppler/-controller implementierten MODBUS-Funktionen durch bit- oder wortweises Lesen und Schreiben.

Im Feldbuskoppler/-controller gibt es 4 verschiedene Typen von Prozessdaten:

- Eingangsworte
- Ausgangsworte
- Eingangsbits
- Ausgangsbits

Der wortweise Zugriff auf die digitalen Ein- und Ausgangsklemmen erfolgt entsprechend der folgenden Tabelle:

<table>
<thead>
<tr>
<th>Digitale Eingänge/Ausgänge</th>
<th>16.</th>
<th>15.</th>
<th>14.</th>
<th>13.</th>
<th>12.</th>
<th>11.</th>
<th>10.</th>
<th>9.</th>
<th>8.</th>
<th>7.</th>
<th>6.</th>
<th>5.</th>
<th>4.</th>
<th>3.</th>
<th>2.</th>
<th>1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessdatenwort</td>
<td>Bit 15</td>
<td>Bit 14</td>
<td>Bit 13</td>
<td>Bit 12</td>
<td>Bit 11</td>
<td>Bit 10</td>
<td>Bit 9</td>
<td>Bit 8</td>
<td>Bit 7</td>
<td>Bit 6</td>
<td>Bit 5</td>
<td>Bit 4</td>
<td>Bit 3</td>
<td>Bit 2</td>
<td>Bit 1</td>
<td>Bit 0</td>
</tr>
<tr>
<td>Byte</td>
<td>High-Byte D1</td>
<td>Low-Byte D0</td>
<td></td>
</tr>
</tbody>
</table>

Durch Hinzufügen eines Offsets von 200_{hex} (0x0200) zu der MODBUS-Adresse können die Ausgänge zurückgelesen werden.

![Abbildung 40: Datenaustausch zwischen MODBUS-Master und Busklemmen](image-url)
Ab Adresse 0x1000 liegen die Registerfunktionen. Diese sind analog mit den implementierten MODBUS-Funktionscodes (read/write) ansprechbar. Anstatt der Adresse eines Klemmenkanals wird dazu die jeweilige Registeradresse angegeben.

Information

7.3.4 Datenaustausch SPS-Funktionalität (CPU) und Busklemmen

Die SPS-Funktionalität (CPU) des Feldbuscontrollers hat über absolute Adressen direkten Zugriff auf die Busklemmendaten.

Abbildung 41: Datenaustausch zwischen SPS-Funktionalität (CPU) des PFCs und Busklemmen
7.3.5 Datenaustausch MODBUS/TCP-Master und SPS-Funktionalität (CPU)

Der Feldbusmaster und die SPS-Funktionalität (CPU) des Feldbuscontrollers haben unterschiedliche Sichtweisen auf die Daten.

Vom Master erzeugte Variablen gelangen als Eingangsvariablen zum Feldbuscontroller und werden dort weiter bearbeitet.
In dem Feldbuscontroller erstellte Daten werden als Ausgangsvariablen über den Feldbus zum Master gesendet.

In dem Feldbuscontroller kann ab Wortadresse 256 bis 511 (Doppelwortadresse 128-255, Byteadresse 512-1023) auf die MODBUS/TCP-Feldbusvariablen zugreifen werden.

Abbildung 42: Datenaustausch zwischen SPS MODBUS/TCP-Master und SPS-Funktionalität (CPU)
7.3.5.1 Beispiel MODBUS/TCP-Master und SPS-Funktionalität (CPU)

Datenzugriff vom MODBUS/TCP-Master

Von dem MODBUS-Master wird grundsätzlich wortweise oder bitweise auf die Daten zugegriffen.

Die Adressierung der ersten 256 Datenworte von den Busklemmen beginnt beim wortweisen und bitweisen Zugriff bei 0.

Die Adressierung der Daten von den Variablen beginnt beim wortweisen Zugriff bei Wort 256, beim bitweisen Zugriff erfolgt die Adressierung dann ab:

- 4096 für Bit 0 im Wort 256
- 4097 für Bit 1 im Wort 256
- ...
- 8191 für Bit 15 im Wort 511.

Die Bit-Nummer lässt sich mit folgender Formel bestimmen:

\[
\text{BitNr} = (\text{Wort} \times 16) + \text{Bitnr_im_Wort}
\]

Beispiel: \(4097 = (256 \times 16) + 1\)

Datenzugriff von der SPS-Funktionalität (CPU)

Beispiel:

Bitzugriff MODBUS auf Bitnummer 4097 => Bitadressierung in der SPS
\(<\text{Wortnr}.<\text{Bitnr}> = 256.1\)

Die SPS-Funktionalität des PFCs kann außerdem byteweise und doppelwortweise auf die Daten zugreifen.

Bei dem byteweisen Zugriff errechnen sich die Adressen nach folgenden Formeln:

- High-Byte Adresse = Wortadresse*2
- Low-Byte Adresse = (Wortadresse*2) + 1

Bei dem doppelwortweisen Zugriff errechnet sich die Adresse nach folgender Formel:

- Doppelwort Adresse = High-Wortadresse/2 (abgerundet)
 oder = Low-Wortadresse/2

Information

Weitere Information

Eine detaillierte Beschreibung der MODBUS- und der entsprechenden IEC-61131-Adressierung finden Sie in dem Kapitel „MODBUS-Register-Mapping“.

7.3.6 Gemeinsamer Zugriff PFC und MODBUS/TCP-Master auf Ausgänge

7.3.7 Anwendungsbeispiel

Abbildung 43: Adressierungsbeispiel für einen Feldbusknoten

Der Aufbau der Prozessdaten ist bei einigen Busklemmen bzw. deren Varianten feldbusspezifisch.
8 In Betrieb nehmen

In diesem Kapitel wird Ihnen exemplarisch die Vorgehensweise für die Inbetriebnahme eines Feldbusknotens schrittweise aufgezeigt.

Voraussetzung für die Kommunikation mit dem Feldbuscontroller ist die Vergabe einer IP-Adresse.

Hinweis

Exemplarisches Beispiel!

Diese Beschreibung ist exemplarisch und beschränkt sich hier auf die Ausführung einer lokalen Inbetriebnahme eines einzelnen Feldbusknoten mit einem nicht vernetzten Rechner unter Windows.

Für die Inbetriebnahme sind drei Arbeitsschritte erforderlich. Die Beschreibung dieser Arbeitsschritte finden Sie in den entsprechenden nachfolgenden Kapiteln.

- Client-PC und Feldbusknoten anschließen
- IP-Adresse an den Feldbusknoten vergeben
- Funktion des Feldbusknotens testen

Im Anschluss an die Inbetriebnahmekapitel wird beschrieben, wie Sie über interne HTML-Seiten Informationen zum Feldbuscontroller auslesen und gegebenenfalls die Werkseinstellungen wiederherstellen können. Außerdem werden Hinweise zur Programmierung des Feldbuscontrollers mit WAGO-I/O-PRO CAA gegeben.
8.1 PC und Feldbusknoten anschließen

Tritt während des Hochlaufens ein Fehler auf, wird dieser mittels der I/O-LED durch rotes Blinken als Fehlercode ausgegeben. Wird nach Anlauf des Feldbuskopplers über die I/O-LED durch 6-maliges rotes Blinken der Fehlercode 6 und anschließend durch 4-maliges rotes Blinken das Fehlerargument 4 ausgegeben, zeigt dieses an, dass noch keine IP-Adresse zugewiesen wurde.
8.2 IP-Adresse an den Feldbusknoten vergeben

Um dem Feldbuscontroller eine IP-Adresse zuzuweisen, verwenden Sie einen BootP-Server, z. B. den im Folgenden verwendeten "WAGO BootP-Server".

Hinweis

Die IP-Adresse muss im Netzwerk eindeutig sein!
Für eine fehlerfreie Netzwerkkommunikation, beachten Sie, dass die zugewiesene IP-Adresse im Netzwerk eindeutig sein muss!
Im Fehlerfall wird Ihnen beim nächsten Neustart über die I/O-LED die Fehlermeldung „Fehler in der IP-Adresskonfiguration“ (Fehlercode 6 – Fehlerargument 6) angezeigt.

Hinweis

IP-Adressvergabe nicht über Router möglich!

8.2.1 IP-Adresse mit dem WAGO-BootP-Server vergeben

Mittels „WAGO-BootP-Server“ oder SPS-Programm kann eine feste IP-Adresse vergeben werden.

Im Folgenden wird die IP-Adressvergabe für den Feldbusknoten exemplarisch mittels des WAGO-BootP-Servers beschrieben.

Hinweis

BootP muss in WAGO-Ethernet-Settings aktiviert sein!
Beachten Sie, dass BootP in WAGO-Ethernet-Settings aktiviert sein muss. Im Auslieferungszustand ist BootP standardmäßig aktiviert.

Information

Weitere Information

Information

Weitere Informationen zu dem WAGO-BootP-Server!

Die Beschreibung umfasst die folgenden Arbeitsschritte:

- MAC-ID ermitteln
- IP-Adresse ermitteln
- BootP-Tabelle editieren
• BootP aktivieren
• BootP deaktivieren

8.2.1.1 MAC-ID ermitteln

1. Notieren Sie die MAC-ID Ihres Feldbuscontrollers, bevor Sie Ihren Feldbusknoten aufbauen.
 Ist der Feldbuscontroller bereits verbaut, schalten Sie die Betriebsspannung des Feldbuscontrollers aus und nehmen Sie ihn aus dem Verbund heraus.

 Die MAC-ID ist auf der Rückseite des Feldbuscontrollers oder auf einem Papierstreifen mit zwei selbstklebenden Abreißetiketten seitlich auf dem Feldbuscontroller aufgebracht.

 MAC-ID des Feldbuscontrollers: 00:30:DE:__:__:__

2. Stecken Sie den Feldbuscontroller in den Verbund des Feldbusknotens.

Hinweis

Bei direkter Verbindung zum PC ein Cross-over-Kabel verwenden!
Erfolgt die Verbindung direkt mit einem Client-PC, wird statt eines Straight-Through-Kabels (1:1) ein sogenanntes Cross-over-Kabel benötigt.

4. Starten Sie den Client-PC, der die Funktion des Masters und BootP-Servers übernimmt.

5. Schalten Sie die Spannungsversorgung am Controller (DC-24V-Netzteil) ein.

Nach dem Einschalten der Betriebsspannung erfolgt die Initialisierung des Feldbuscontrollers. Dieser ermittelt die Busklemmenkonstellation und erstellt entsprechend das Prozessabbild.

Während des Hochlaufens blinkt die I/O-LED rot. Leuchtet nach kurzer Zeit die I/O-LED grün auf, ist der Feldbuscontroller betriebsbereit.

Tritt während des Hochlaufens ein Fehler auf, der mittels I/O-LED durch rotes Blinken als Fehlermeldung ausgegeben wird, werten Sie Fehlercode und -argument aus und beheben Sie den Fehler.

Information

Weitere Informationen zu der LED-Signalisierung
Entnehmen Sie die genaue Beschreibung für die Auswertung der angezeigten LED-Signale dem Kapitel „Diagnose“ > … > „LED-Signalisierung“.
Wird nach Anlauf des Feldbuscontrollers durch 6-maliges rotes Blinken der Fehlercode 6 und anschließend durch 4-maliges rotes Blinken das Fehlerargument 4 mittels I/O-LED ausgegeben, zeigt dies an, dass noch keine IP-Adresse zugewiesen wurde.

8.2.1.2 IP-Adresse ermitteln

1. Ist der Client-PC bereits in ein IP-Netzwerk eingebunden, können Sie die IP-Adresse des Client-PCs ermitteln, indem Sie auf Ihrer Bildschirmoberfläche über das Startmenü / Einstellungen gehen und auf Systemsteuerung klicken.

2. Klicken Sie doppelt auf das Icon Netzwerk. Das Netzwerk-Dialogfenster wird geöffnet.

Unter Windows 2000/XP:

- Wählen Sie [Netzwerk- und DFÜ-Verbindungen].
- In dem sich öffnenden Fenster klicken Sie mit der rechten Maustaste auf [LAN-Verbindung] und öffnen die Eigenschaften der Verbindung.
- Markieren Sie den Eintrag Internetprotokoll TCP/IP.

Unter Windows 7:

- Wählen Sie in der Systemsteuerung [Netzwerk- und Freigabecenter].
- In dem sich öffnenden Fenster klicken Sie mit der rechten Maustaste auf [LAN-Verbindung] und öffnen die Eigenschaften der Verbindung.

Hinweis

TCP/IP-Komponente bei Bedarf nachinstallieren!

3. Klicken Sie anschließend auf die Schaltfläche [Eigenschaften...].

4. In dem Eigenschaftenfenster entnehmen Sie die IP-Adresse, die Subnetzmaske und gegebenenfalls die Adresse für das Gateway Ihres Client-PCs, und notieren Sie diese Werte:

 IP-Adresse Client-PC: ___ . ___ . ___ . ___
 Subnetzmaske: ___ . ___ . ___ . ___
 Gateway: ___ . ___ . ___ . ___

5. Wählen Sie nun eine gewünschte IP-Adresse für Ihren Feldbusknoten.
8.2.1.3 BootP-Tabelle editieren

Die BootP-Tabelle stellt die Datenbasis für den BootP-Server dar. Sie liegt in Form einer Textdatei (bootptab.txt) auf dem Client-PC, auf welchem der WAGO-BootP-Server installiert ist.

Hinweis

Für weitere Konfiguration BootP-Server installieren!

Voraussetzung für die folgenden Schritte ist die korrekte Installation des WAGO-BootP-Servers.

1. Öffnen Sie auf Ihrem PC das **Startmenü** und wählen Sie den Menüpunkt **Programme \ WAGO Software \ WAGO BootP Server** aus.
2. Klicken Sie auf **WAGO BootP Server Konfiguration**.

Sie erhalten die editierbare Tabelle „bootptab.txt“.

Im Anschluss an die Auflistung aller Kürzel, die in der BootP-Tabelle verwendet werden können, sind am Ende der Tabelle zwei Beispiele für die Vergabe einer IP-Adresse aufgeführt:

- „Example of entry with no gateway“
- „Example of entry with gateway“

Für das in dieser Beschreibung behandelte lokale Netzwerk wird kein Gateway benötigt. Somit können Sie das Beispiel „Example of entry with no gateway“ verwenden.

![bootptab.txt Editor](image)

Abbildung 44: BootP-Tabelle

Die aufgeführten Beispiele enthalten folgende Informationen:
Tabelle 37: Informationen der BootP-Tabelle

<table>
<thead>
<tr>
<th>Angabe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1, node2</td>
<td>Hier kann ein beliebiger Name für den Knoten vergeben werden.</td>
</tr>
<tr>
<td>ht=1</td>
<td>Hier wird der Hardware-Typ des Netzwerkes angegeben. Für ETHERNET</td>
</tr>
<tr>
<td></td>
<td>gilt der Hardware-Typ 1. Die Nummern sind im RFC1700 beschrieben.</td>
</tr>
<tr>
<td>ha=003DE000100</td>
<td>Hier wird die Hardware-Adresse (MAC-ID) des Feldbuscontrollers angegeben.</td>
</tr>
<tr>
<td>ha=003DE000200</td>
<td>(hexadezimal).</td>
</tr>
<tr>
<td>ip= 10.1.254.100</td>
<td>Hier wird die IP-Adresse des Feldbuscontrollers angegeben (dezimal).</td>
</tr>
<tr>
<td>ip= 10.1.254.200</td>
<td>(dezimal).</td>
</tr>
<tr>
<td>T3=0A.01.FE.01</td>
<td>Hier wird die Gateway-Adresse angegeben (hexadezimal).</td>
</tr>
<tr>
<td>sm=255.255.0.0</td>
<td>Zusätzlich kann die Subnetzmaske des Subnetzes eingetragen werden, zu</td>
</tr>
<tr>
<td></td>
<td>dem der Feldbuscontroller gehört (dezimal).</td>
</tr>
</tbody>
</table>

Für das in dieser Beschreibung behandelte lokale Netzwerk wird kein Gateway benötigt.
Somit kann das obere Beispiel „Example of entry with no gateway“ verwendet werden.

3. Tauschen Sie in folgender Textzeile die zwölfstellige Hardware-Adresse aus, die in dem Beispiel hinter „ha=“ eingetragen ist.

```
node1:ht=1:ha=003DE000100:ip=10.1.254.100
```

4. Geben Sie an dieser Stelle die MAC-ID Ihres eigenen Feldbuscontrollers ein.

5. Wenn Sie Ihrem Feldbusknoten einen Namen geben möchten, löschen Sie den Namen „node1“ und tragen Sie an dieser Stelle einen beliebigen Namen ein.

```
node1:ht=1:ha=003DE000100:ip=10.1.254.100
```


```
node1:ht=1:ha=003DE000100:ip=10.1.254.100
```

7. Da Sie das zweite Beispiel „Example of entry with gateway“ an dieser Stelle nicht benötigen, setzen Sie als Kommentar-Zeichen die Raute (#) vor die Textzeile von Beispiel 2:

```
# node2:hat=1:ha=003 0DE 0002 00:ip=10.1.254.200:T3=0A.01.FE.01
```

Diese Zeile wird nachfolgend nicht mehr ausgewertet.

Hinweis

Adressen weiterer Knoten in bootptap.txt eintragen!
Für die Adressierung weiterer Feldbusknoten geben Sie für jeden Knoten analog eine entsprechende Textzeile mit den gewünschten Einträgen ein.
8. Wählen Sie im Menü **Datei** den Menüpunkt **Speichern** aus, um die geänderten Einstellungen in der Datei „bootptab.txt“ zu sichern.

9. Schließen Sie den Editor.

8.2.1.4 BootP aktivieren

1. Öffnen Sie auf Ihrem PC das **Startmenü** und wählen Sie den Menüpunkt **Programme\WAGO Software\WAGO BootP Server** aus.

2. Klicken Sie auf **WAGO BootP Server** um das Dialogfenster zu öffnen.

In dem BootP-Server werden nun eine Reihe von Meldungen ausgegeben. Die Fehlermeldungen zeigen Ihnen an, dass in dem Betriebssystem einige Services (z. B. Port 67, Port 68) nicht definiert sind.

![WAGO BootP Server Dialogfenster](image)

Abbildung 45: Dialogfenster des WAGO-BootP-Servers mit Meldungen

Damit die neue IP-Adresse in den Feldbuscontroller übernommen wird, starten Sie den Feldbuscontroller zu diesem Zeitpunkt unbedingt durch einen Hardware-Reset neu:

4. Unterbrechen Sie die Spannungsversorgung des Feldbuscontrollers für ca. 2 Sekunden oder drücken Sie den Betriebsartenschalters herunter, der sich hinter der Konfigurationsschnittstellen-Klappe befindet.

Die IP-Adresse ist fest im Feldbuscontroller gespeichert.

5. Um den BootP-Server wieder zu schließen, klicken Sie auf die Schaltfläche **[Stop]** und dann auf die Schaltfläche **[Exit]**.
8.2.1.5 BootP deaktivieren

Sie müssen das BootP-Protokoll deaktivieren, damit der Controller die konfigurierte IP-Adresse aus dem EEPROM verwendet, so ist keine Anwesenheit eines BootP-Servers mehr erforderlich.

Hinweis
Für die dauerhafte Adressvergabe, muss BootP deaktiviert werden!
Damit die neue IP-Adresse dauerhaft in den Feldbuscontroller übernommen wird, müssen Sie BootP deaktivieren.
Damit wird ausgeschlossen, dass der Feldbuscontroller eine erneute BootP-Anfrage erhält.

Hinweis
Kein Verlust der IP-Adresse bei deaktiviertem BootP-Protokoll!
Ist das BootP-Protokoll nach der Adressvergabe deaktiviert, bleibt die gespeicherte IP-Adresse auch erhalten, wenn es einen längeren Spannungsaußfall gibt oder der Feldbuscontroller ausgebaut wird.

BootP in WAGO-ETHERNET-Settings deaktivieren

ACHTUNG
Kommunikationskabel nicht unter Spannung stecken!
Um Schäden an der Kommunikationsschnittstelle zu vermeiden, stecken und ziehen Sie das Kommunikationskabel 750-920 bzw. 750-923 nicht unter Spannung!
Der Feldbuscontroller muss dazu spannungsfrei sein!

1. Schalten Sie die Betriebsspannung des Feldbuscontrollers aus.
2. Schließen Sie das Kommunikationskabel 750-920 oder 750-921 bzw. den Bluetooth®-Adapter 750-923 an die Konfigurationsschnittstelle des Feldbuscontrollers und an Ihren PCs an.
3. Schalten Sie die Betriebsspannung des Feldbuscontrollers wieder ein.

Nach dem Einschalten der Betriebsspannung erfolgt die Initialisierung des Feldbuscontrollers. Dieser ermittelt die Busklemmenkonstellation und erstellt entsprechend das Prozessabbild.
Während des Hochlaufens blinkt die I/O-LED rot. Leuchtet nach kurzer Zeit die I/O-LED grün auf, ist der Feldbuscontroller betriebsbereit.

Tritt während des Hochlaufens ein Fehler auf, der mittels I/O-LED durch rotes Blinken als Fehlermeldung ausgegeben wird, werten Sie Fehlercode und -argument aus und beheben Sie den Fehler.
Weitere Informationen zu der LED-Signalisierung

Entnehmen Sie die genaue Beschreibung für die Auswertung der angezeigten LED-Signale dem Kapitel „Diagnose“ > … > „LED-Signalisierung“.

Wird nach Anlauf des Feldbuscontrollers durch 6-maliges rotes Blinken der Fehlercode 6 und anschließend durch 4-maliges rotes Blinken das Fehlerargument 4 mittels I/O-LED ausgegeben, zeigt dies an, dass noch keine IP-Adresse zugewiesen wurde.

4. Starten Sie das Programm **WAGO-ETHERNET-Settings**.

5. Klicken Sie auf [Identifizieren], um den angeschlossenen Feldbusknoten einzulesen und zu identifizieren.

6. Wählen Sie das Register **Netzwerk**.

7. Damit Sie eine feste Adresse vergeben können, wählen Sie im Feld **Einstellungen** die Option “Folgende Adressen verwenden:” an.

8. Geben Sie die gewünschte **IP-Adresse** und gegebenenfalls die Adresse der Subnetzmaske und des Gateways ein.

9. Klicken Sie auf die Schaltfläche [Schreiben], um die Einstellungen in den Feldbusknoten zu übernehmen.

10. Sie können WAGO-ETHERNET-Settings schließen.
8.2.1.6 Gründe für eine fehlgeschlagene IP-Adressvergabe

- Die MAC-Adresse des Feldbuscontrollers stimmt nicht mit dem Eintrag in der Datei „bootstrap.txt“ überein
- Der Client-PC auf dem der BootP-Server läuft, befindet sich nicht im gleichen Subnetz wie der Feldbuscontroller, d. h. die IP-Adressen passen nicht zusammen.
 Beispiel: Client-IP: 192.168.0.10 und Feldbuscontroller-IP: 10.1.254.5
- Client-PC und/oder Feldbuscontroller haben keine ETHERNET-Verbindung
- Die Signalqualität ist schlecht (Switches oder Hubs verwenden)
8.3 Funktion des Feldbusknotens testen

1. Um die korrekte Vergabe der IP-Adresse und die Kommunikation mit dem Feldbusknoten zu testen, schalten Sie zunächst die Betriebsspannung des Feldbusknotens aus.

2. Stellen Sie eine nicht-serielle Feldbusverbindung zwischen Client-PC und Feldbusknoten her.

Tritt während des Hochlaufens ein Fehler auf, der mittels I/O-LED durch rotes Blinken als Fehlermeldung ausgegeben wird, werten Sie Fehlercode und -argument aus und beheben Sie den Fehler.

Information

Weitere Informationen zu der LED-Signalisierung

Entnehmen Sie die genaue Beschreibung für die Auswertung der angezeigten LED-Signale dem Kapitel „Diagnose“ > … > „LED-Signalisierung“.

3. Rufen Sie die DOS-Eingabeaufforderung unter Startmenü / Programme / Eingabeaufforderung auf.

4. Geben Sie den Befehl **ping** mit der von Ihnen vergebenen IP-Adresse in der folgenden Schreibweise ein:

 ping [Leerzeichen] XXX . XXX . XXX . XXX

 Abbildung 46: Beispiel für den Funktionstest eines Feldbusknotens

5. Drücken Sie die Taste **[Enter]**.

 Ihr Client-PC empfängt nun eine Antwort vom Feldbusknoten, die in der DOS-Eingabeaufforderung dargestellt wird. Falls stattdessen die Fehlermeldung „Zeitüberschreitung der Anforderung (Timeout)” erscheint, vergleichen Sie Ihre Eingaben nochmals mit der zugewiesenen IP-Adresse.

6. Bei erfolgreichem Test schließen Sie die DOS-Eingabeaufforderung.

Der Feldbusknoten ist jetzt für die Kommunikation vorbereitet.
8.4 Werkseinstellungen wiederherstellen

Hinweis
Für vollständiges Löschen erst Dateisystem zurücksetzen!
Beachten Sie, dass Sie für das vollständige Löschen des Controllers zunächst das Dateisystem zurücksetzen. Nutzen Sie dazu das Programm WAGO-ETHERNET-Settings, wie nachfolgend beschrieben, und klicken Sie zuerst auf die Schaltfläche [Dateisystem zurücksetzen]. Anschließend stellen Sie die Werkseinstellungen wieder her.

Um die werksseitigen Einstellungen wiederherzustellen, gehen Sie wie folgt vor:

1. Schalten Sie die Betriebsspannung des Feldbuscontrollers aus.
2. Schließen Sie das Kommunikationskabel 750-920 oder 750-921 bzw. den Bluetooth®-Adapter 750-923 an die Konfigurationsschnittstelle des Feldbuscontrollers und an Ihren PCs an.
3. Schalten Sie die Betriebsspannung des Feldbuscontrollers wieder ein.
4. Starten Sie das Programm WAGO-ETHERNET-Settings.
5. Wählen Sie in der oberen Menüleiste die Schaltfläche [Werkseinstellungen] und bestätigen Sie die folgende Abfrage mit [Ja].

Es wird automatisch ein Neustart des Feldbusknotens ausgeführt. Der Start erfolgt mit den Werkseinstellungen.
PFC mit WAGO-I/O-PRO programmieren

Durch die IEC-61131-3-Programmierung kann das Gerät ETHERNET TCP/IP-Controller über die Funktionen eines Feldbuskopplers hinaus die Funktionalität einer SPS nutzen. Die Applikation gemäß IEC-61131-3 erstellen Sie mit dem Programmiertool WAGO-I/O-PRO.

Die Beschreibung der Programmierung mit WAGO-I/O-PRO ist nicht Bestandteil dieses Handbuchs. In den folgenden Kapiteln wird vielmehr auf wichtige Hinweise bei der Projekterstellung in der WAGO-I/O-PRO und auf spezielle Bausteine hingewiesen, die Sie explizit für die Programmierung des Controllers nutzen können.

Ferner wird beschrieben, wie Sie in WAGO-I/O-PRO einen geeigneten Kommunikationstreiber laden, ein IEC-61131-3-Programm auf den Controller übertragen und deren Abarbeitung starten.

Hinweis

Eine WAGO-I/O-PRO-/CODESYS)-Instanz pro Zielsystem!
Beachten Sie, dass eine gleichzeitige Verbindung mehrerer WAGO-I/O-PRO-/CODESYS)-Instanzen auf ein Zielsystem nicht möglich ist.

Hinweis

Namenskonventionen für WAGO-I/O-PRO-/CODESYS)-Projekt beachten!

Information

Weitere Information

1. Starten Sie die Programmierumgebung unter Startmenü \ Programme \ WAGO-I/O-PRO.

2. Legen Sie unter Datei > Neu ein neues Projekt an.

Sie erhalten ein Dialogfenster, in dem Sie das Zielsystem für die Programmierung einstellen.
3. Wählen Sie den Feldbuscontroller 750-843 mit dem Eintrag **WAGO_750-843** aus und bestätigen Sie mit **OK**.

4. Wählen Sie im folgenden Dialogfenster die Programmierart (AWL, KOP, FUP, AS, ST oder CFC) aus.

Damit Sie in Ihrem neuen Projekt definiert auf alle Busklemmendaten zugreifen können, ist zunächst die Busklemmenkonfiguration gemäß der vorhandenen Feldbusknoten-Hardware zusammenzustellen.
9.1 Feldbuscontroller mit dem I/O-Konfigurator konfigurieren

Der I/O-Konfigurator ist ein in der WAGO-I/O-PRO eingebundenes Plug-in zum Ermitteln von Adressen für die Busklemmen an einem Feldbuscontroller.

1. Wählen Sie im linken Bildschirmfenster der WAGO-I/O-PRO-Oberfläche die Registerkarte Ressourcen.

2. Um den I/O-Konfigurator zu starten, klicken Sie in der Baumstruktur doppelt auf Steuerungskonfiguration.

3. Erweitern Sie in der Baumstruktur den Zweig Hardware configuration.

5. Klicken Sie im geöffneten Fenster „Konfiguration“ auf die Schaltfläche Hinzufügen, um das Modulauswahlfenster zu öffnen.

Projektieren Sie auf diese Weise die Baumstruktur in der Hardware-Konfiguration. Berücksichtigen Sie alle Busklemmen, die Daten liefern oder erwarten.

Greifen Sie online auf Ihren Feldbuscontroller zu, können Sie im Fenster „Konfiguration“ die Schaltfläche [WAGO-I/O-CHECK starten und scannen] verwenden, um den physikalisch angeschlossenen Feldbuscontroller mit angereihten Busklemmen einzulesen und alle Komponenten anzuzeigen.

Hinweis

Der Klemmenbusaufbau im WAGO-I/O-Konfigurator muss mit dem physikalischen Knotenaufbau übereinstimmen!

Um das Datenblatt einer Busklemme zu öffnen, klicken Sie im Fenster „Konfiguration“ auf die betreffende Busklemme und drücken die Schaltfläche [Datenblatt]. Das Datenblatt wird in einem neuen Fenster angezeigt.

Die Adressen der Steuerungskonfiguration werden neu berechnet und die Baumstruktur der Steuerungskonfiguration aktualisiert.

9. Übersetzen Sie das Projekt im Menü Projekt mit Übersetzen/Alles übersetzen.

Eine detaillierte Beschreibung zur Bedienung der Software WAGO-I/O-PRO und des I/O-Konfigurators finden Sie auch in der Online-Hilfe zur WAGO-I/O-PRO.
9.2 ETHERNET-Bibliotheken für WAGO-I/O-PRO

Für unterschiedliche IEC-61131-3-Programmieraufgaben stehen Ihnen in WAGO-I/O-PRO verschiedene Bibliotheken zur Verfügung. Diese enthalten universell einsetzbare Funktionsbausteine und können somit Ihre Programmerstellung erleichtern und beschleunigen.

Nach dem Einbinden der Bibliotheken können Sie auf Funktionsbausteine, Funktionen und Datentypen zugreifen, die Sie genauso benutzen können, wie selbstdefinierte.

Information

Weitere Information

Nachfolgende Bibliotheken stehen Ihnen spezifisch für ETHERNET-Projekte mit WAGO-I/O-PRO zur Verfügung.

Tabelle 38: ETHERNET-Bibliotheken für WAGO-I/O-PRO

<table>
<thead>
<tr>
<th>Bibliothek</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet.lib</td>
<td>Funktionsbausteine zur Kommunikation via ETHERNET</td>
</tr>
<tr>
<td>ModbusEthernet_04.lib</td>
<td>Funktionsbausteine für den Datenaustausch mit mehreren MODBUS/TCP/UDP-Slaves</td>
</tr>
<tr>
<td></td>
<td>Stellt außerdem einen MODBUS-Server zur Verfügung, welcher die MODBUS-Dienste auf einem Word-Array abbildet.</td>
</tr>
<tr>
<td>Mail_02.lib</td>
<td>Funktionsbausteine zum Versenden von Emails</td>
</tr>
</tbody>
</table>

Information

Weitere Information
9.3 IEC-Programm auf den Controller übertragen

Sie können eine erstellte IEC-61131-Applikation auf zwei Arten von Ihrem PC auf den Controller übertragen (siehe folgende Kapitel):

- mittels serieller Schnittstelle direkt übertragen
- mittels Feldbus übertragen

Für die Übertragung sind geeignete Kommunikationstreiber erforderlich, welche Sie in WAGO-I/O-PRO laden und konfigurieren.

Hinweis
Kommunikationsparameter des Treibers anpassen!
Achten Sie bei der Auswahl des gewünschten Treibers auf die richtigen Einstellungen und Anpassungen der Kommunikationsparameter (siehe nachfolgende Beschreibung).

Hinweis
„Reset“ und „Start“ zum Setzen der physikalischen Ausgänge notwendig!
Die Initialisierungswerte für die physikalischen Ausgänge werden nicht direkt nach dem Download gesetzt. Wählen sie in der Menüleiste der WAGO-I/O-PRO Online > Reset und nachfolgend Online > Start zum Setzen der Werte.

Hinweis
Applikation vor dem Erzeugen großer Bootprojekte stoppen!

Information
Weitere Informationen
1. Kontrollieren Sie, ob sich der Betriebsartenschalter in der mittleren oder in der oberen Stellung befindet. Sollte dieses nicht der Fall sein, bringen Sie den Betriebsartenschalter in die mittlere oder obere Stellung.

2. Verbinden Sie über das WAGO-Kommunikationskabel eine COM-Schnittstelle Ihres PCs mit der seriellen Service-Schnittstelle des Feldbuscontrollers.

9.3.1 Applikation mittels serieller Service-Schnittstelle übertragen

Hinweis

Stellung des Betriebsartenschalters bei Zugriff auf Controller beachten!

Für den Zugriff auf den Feldbuscontroller muss der Betriebsartenschalter, der sich hinter der Abdeck-Klappe des Feldbuscontrollers neben der Service-Schnittstelle befindet, in der mittleren oder in der oberen Stellung sein.

Um eine physikalische Verbindung über die serielle Service-Schnittstelle herzustellen, verwenden Sie das WAGO-Kommunikationskabel. Dieses ist im Lieferumfang der Programmersoftware WAGO-I/O-PRO (Art.-Nr.: 759-333) enthalten oder kann als Zubehör über die Bestell-Nr.: 750-920 bezogen werden.

ACHTUNG

Kommunikationskabel nicht unter Spannung stecken!

Um Schäden an der Kommunikationsschnittstelle zu vermeiden, stecken und ziehen Sie das Kommunikationskabel 750-920 bzw. 750-923 nicht unter Spannung!
Der Feldbuskoppler muss dazu spannungsfrei sein!

Für die serielle Datenübertragung ist ein Kommunikationstreiber erforderlich. Dieser Treiber und seine Parametrierung wird in WAGO-I/O-PRO in dem Dialog „Kommunikationsparameter“ eingetragen:

3. Starten Sie die Software WAGO-I/O-PRO unter Startmenü > Programme > WAGO-Software > WAGO-I/O-PRO.

4. Wählen Sie im Menü Online den Unterpunkt Kommunikationsparameter aus.

In dem mittleren Fenster des Dialogs sind die folgenden Standardeinträge vorhanden:

- **Port:** COM1
- **Baudrate:** 19200
- **Parity:** Even
- **Stop-bits:** 1
- **Motorola byteorder:** No

7. Ändern Sie gegebenenfalls die Einträge entsprechend der obigen Werte ab, indem Sie auf den jeweiligen Wert klicken und diesen editieren.

8. Bestätigen Sie mit **OK**

Die RS-232-Schnittstelle ist nun für das Übertragen der Applikation konfiguriert.

9. Um eine Verbindung mit dem Feldbuscontroller aufzubauen, klicken Sie im Menü **Online** auf **Einloggen**.

Durch das Einloggen wird der Online-Modus zum Feldbuscontroller eingeschaltet und die Kommunikationsparameter sind nicht mehr aufrufbar.

Sofern noch kein Programm im Feldbuscontroller vorhanden ist, erscheint ein Fenster mit der Abfrage, ob das Programm geladen werden soll.

10. Um das aktuelle Programm zu laden, bestätigen Sie mit **Ja**.

11. Klicken Sie im Menü **Online** auf **Bootprojekt erzeugen**.

Auf diese Weise wird Ihr kompiliertes Projekt auch ausgeführt, wenn Sie den Feldbuscontroller neu starten oder wenn es einen Spannungsaußfall gibt.
12. Wenn das Programm geladen ist, starten Sie die Programmabarbeitung über das Menü **Online** und den Menüpunkt **Start**.

Dieser Befehl startet die Abarbeitung Ihres Programms in der Steuerung bzw. in der Simulation.

Am rechten Ende der Statusleiste wird „ONLINE“ und „LÄUFT“ angezeigt.

13. Um den Online-Betrieb zu beenden, klicken Sie im Menü **Online** auf den Menüpunkt **Ausloggen**.
9.3.2 Applikation via ETHERNET übertragen

Die physikalische Verbindung zwischen PC und Feldbuscontroller erfolgt über das Feldbuskabel. Für die Datenübertragung ist ein geeigneter Kommunikationstreiber erforderlich. Den Treiber und seine Parameter tragen Sie in WAGO-I/O-PRO im Dialog „Kommunikationsparameter“ ein:

Hinweis

Feldbuscontroller benötigt IP-Adresse für den Zugriff!
Damit Sie auf den Feldbuscontroller zugreifen können, benötigt der Feldbuscontroller eine IP-Adresse. Der Betriebsartenschalter, der sich hinter der Abdeck-Klappe des Feldbuscontrollers neben der Service-Schnittstelle befindet, muss in der mittleren oder in der oberen Stellung sein.

1. Starten Sie die Software WAGO-I/O-PRO unter **Startmenü > Programme > WAGO-Software > WAGO-I/O-PRO**.
2. Wählen Sie im Menü **Online** den Unterpunkt **Kommunikationsparameter** aus.

3. Klicken Sie auf **Neu...**, um eine neue Verbindung herzustellen und vergeben Sie einen Namen, z. B. TcpIp-Verbindung.

In dem mittleren Fenster des Dialogs sind die folgenden Standardeinträge vorhanden:

- Adresse: IP-Adresse des Feldbuscontrollers
- Port: 2455
- Motorolabyteorder: No
- Debug Stufe: 16#0000

5. Ändern Sie gegebenenfalls die Einträge entsprechend der obigen Werte ab, indem Sie auf den jeweiligen Wert klicken und diesen editieren.
6. Bestätigen Sie mit **OK**.

Die TCP/IP-Schnittstelle ist nun für das Übertragen der Applikation konfiguriert.
7. Um eine Verbindung mit dem Feldbuscontroller aufzubauen, klicken Sie im Menü **Online** auf **Einloggen**.

Durch das Einloggen wird der Online-Modus zum Feldbuscontroller eingeschaltet und die Kommunikationsparameter sind nicht mehr aufrufbar.

Sofern noch kein Programm im Feldbuscontroller vorhanden ist, erscheint ein Fenster mit der Abfrage, ob das Programm geladen werden soll.

8. Um das aktuelle Programm zu laden, bestätigen Sie mit **Ja**.

9. Klicken Sie im Menü **Online** auf **Bootprojekt erzeugen**.

Auf diese Weise wird Ihr kompiliertes Projekt auch ausgeführt, wenn Sie den Feldbuscontroller neu starten oder wenn es einen Spannungsausfall gibt.

10. Wenn das Programm geladen ist, starten Sie die Programmabarbeitung über das Menü **Online** und den Menüpunkt **Start**.

Dieser Befehl startet die Abarbeitung Ihres Programms in der Steuerung bzw. in der Simulation.

Am rechten Ende der Statusleiste wird „ONLINE“ und „LÄUFT“ angezeigt.

11. Um den Online-Betrieb zu beenden, klicken Sie im Menü **Online** auf den Menüpunkt **Ausloggen**.
9.4 Informationen zum Feldbuscontroller auslesen

Über einen Web-Browser lesen Sie die im Feldbuscontroller gespeicherten Informationen in Form von HTML-Seiten aus.

1. Um die Seiten anzuzeigen, öffnen Sie einen Web-Browser.

2. Geben Sie im Adressfeld des Browsers die IP-Adresse Ihres Feldbuscontrollers ein und drücken Sie die Enter-Taste.

Die Informationsseite zum Feldbuscontroller wird im Browser angezeigt.

3. Für Informationen zum Feldbusknoten klicken Sie auf Terminal status.

Hinweis
Wenn Zugriff fehlschlägt, Proxy-Server deaktivieren!
Sollten die HTML-Seiten bei lokalem Zugriff auf den Feldbusknoten nicht angezeigt werden, definieren Sie in Ihrem Web-Browser, dass für die IP-Adresse des Knotens ausnahmsweise kein Proxy-Server verwendet werden soll.

Auf den HTML-Seiten werden folgende Informationen angezeigt:

Informationen zum Feldbuscontroller:
• Bestellnummer
• Version der Firmware

Informationen zum Netzwerk:
• MAC-Adresse des Feldbuscontrollers
• IP-Adresse des Feldbuscontrollers
• Adresse des Gateways (falls vorhanden)
• Anzahl der gesendeten und empfangenen Pakete

Diagnose- und Statusinformationen:
• Gesendete BootP-Anfragen
• Zeitüberschreitung der MODBUS/TCP-Verbindung
• Fehlercode
• Fehlerargument
• Fehlerbeschreibung

Informationen zum Feldbusknoten:
• Anzahl der digitalen, analogen oder komplexen Klemmen
• Darstellung des Prozessabbildes
Abbildung 49: HTML-Seite mit Informationen zum Feldbuscontroller

Abbildung 50: HTML-Seite mit Informationen zum Feldbusknoten
10 Diagnose

10.1 LED-Signalisierung

Für die Vor-Ort-Diagnose besitzt der Feldbuscontroller LEDs, die den Betriebszustand des Feldbuskopplers/-controllers bzw. des ganzen Knotens anzeigen (siehe folgende Abbildung).

Abbildung 51: Anzeigeelemente (zwei Fertigungsvarianten)

Die Diagnoseanzeigen und deren Bedeutung werden in den nachfolgenden Kapiteln erläutert.

Die LEDs sind gruppenweise den verschiedenen Diagnosebereichen zugeordnet:

<table>
<thead>
<tr>
<th>Diagnosebereich</th>
<th>LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldbusstatus</td>
<td>• ON</td>
</tr>
<tr>
<td></td>
<td>• LINK</td>
</tr>
<tr>
<td></td>
<td>• TxD/RxD</td>
</tr>
<tr>
<td></td>
<td>• ERROR</td>
</tr>
<tr>
<td>Knotenstatus</td>
<td>• I/O</td>
</tr>
<tr>
<td></td>
<td>• USR</td>
</tr>
<tr>
<td>Versorgungsspannungsstatus</td>
<td>• A (Systemversorgung)</td>
</tr>
<tr>
<td></td>
<td>• B (Feldversorgung)</td>
</tr>
</tbody>
</table>
10.1.1 Feldbusstatus auswerten

Der Betriebszustand der Kommunikation über den Feldbus wird über die obere LED-Gruppe signalisiert, 'ON', 'LINK', 'TxD/RxD' und 'ERROR'.

Tabelle 40: Diagnose des Feldbusstatus – Abhilfe im Fehlerfall

<table>
<thead>
<tr>
<th>LED-Status</th>
<th>Bedeutung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grün</td>
<td>Feldbus Initialisierung ist einwandfrei</td>
<td>-</td>
</tr>
<tr>
<td>aus</td>
<td>Feldbus Initialisierung ist fehlerhaft, keine Funktion oder Selbsttest</td>
<td>1. Überprüfen Sie die Versorgungs- spannung (24 V, 0 V) und die IP-Konfiguration.</td>
</tr>
<tr>
<td>LINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grün</td>
<td>Der Feldbusknoten hat Verbindung zu dem physikalischen Netzwerk.</td>
<td>-</td>
</tr>
<tr>
<td>aus</td>
<td>Der Feldbusknoten hat keine Verbindung zu physikalischem Netzwerk.</td>
<td>1. Überprüfen Sie das Feldbuskabel.</td>
</tr>
<tr>
<td>TxD/RxD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grün</td>
<td>Datenaustausch über ETHERNET findet statt.</td>
<td>-</td>
</tr>
<tr>
<td>aus</td>
<td>Es findet kein Datenaustausch über ETHERNET statt.</td>
<td>-</td>
</tr>
<tr>
<td>ERROR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rot</td>
<td>Fehler auf dem Feldbus</td>
<td>1. Überprüfen Sie die Netzwerklast.</td>
</tr>
<tr>
<td>aus</td>
<td>Kein Fehler auf dem Feldbus, normaler Betrieb</td>
<td>-</td>
</tr>
</tbody>
</table>
10.1.2 Knotenstatus auswerten – I/O-LED (Blinkcode-Tabelle)

Der Betriebszustand der Kommunikation zwischen dem Feldbuskoppler/-controller und den Busklemmen wird über die I/O-LED signalisiert.

Tabelle 41: Diagnose des Knotenstatus – Abhilfe im Fehlerfall

<table>
<thead>
<tr>
<th>LED-Status</th>
<th>Bedeutung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>grün</td>
<td>Datenzyklus auf dem Klemmenbus.</td>
<td>Normale Betriebsbedingung</td>
</tr>
<tr>
<td>orange</td>
<td>Start der Firmware. Der Anlauf wird durch ca. 1 … 2 Sekunden schnelles Blinken angezeigt.</td>
<td>-</td>
</tr>
<tr>
<td>dauerhaft</td>
<td>Es liegt ein Hardware-Defekt des Feldbuskollectors/-controllers vor.</td>
<td>Tauschen Sie den Feldbuskoppler/-controller aus.</td>
</tr>
<tr>
<td>blinkend</td>
<td>Blinken mit ca. 10 Hz weist auf die Initialisierung des Klemmenbusses oder auf einen allgemeinen Klemmenbusfehler hin.</td>
<td>Beachten Sie nachfolgenden Blinkcode.</td>
</tr>
<tr>
<td>zyklisch</td>
<td>Es werden auftretende Klemmenbusfehler mit bis zu drei nacheinander folgende Blinksequenzen angezeigt. Zwischen diesen Sequenzen ist jeweils eine kurze Pause.</td>
<td>Werten Sie die angezeigten Blinksequenzen anhand der nachfolgenden Blinkcode-Tabelle aus. Das Blinken zeigt eine Fehlermeldung an, die sich aus einem Fehlercode und einem Fehlerargument zusammensetzt.</td>
</tr>
<tr>
<td>aus</td>
<td>Kein Datenzyklus auf dem Klemmenbus.</td>
<td>Die Versorgungsspannung des Feldbuskollectors/-controllers ist nicht eingeschaltet.</td>
</tr>
</tbody>
</table>

Nach Einschalten der Versorgungsspannung läuft das Gerät hoch. Dabei blinkt die I/O-LED orange.

Anschließend wird der Klemmenbus initialisiert. Dies wird durch rotes Blinken mit 10 Hz für 1 … 2 Sekunden signalisiert.

Nach fehlerfreier Initialisierung zeigt die I/O-LED grünes Dauerlicht. Im Fehlerfall blinkt die I/O-LED rot.

Mit Hilfe eines Blinkcodes werden detaillierte Fehlermeldungen angezeigt. Ein Fehler wird über bis zu 3 Blinksequenzen zyklisch dargestellt.

Nach Beseitigung eines Fehlers ist der Feldbusknoten durch Aus- und Einschalten der Versorgungsspannung des Gerätes neu zu starten.
Beispiel eines Klemmenfehlers:

- Die I/O-LED leitet mit der 1. Blinksequenz (ca. 10 Hz) die Fehleranzeige ein.
Nach der zweiten Pause folgt die 3. Blinksequenz (ca. 1 Hz):
Die I/O-LED blinkt zwölf Mal.
Das Fehlerargument 12 bedeutet, dass der Klemmenbus nach der 12.
Busklemme unterbrochen ist.

Somit ist die 13. Busklemme entweder defekt oder aus dem Verbund
herausgezogen.

Tabelle 42: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 1

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Ungültige Prüfsumme im Parameterbereich des Feldbuscontrollers</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>1</td>
<td>Interne Speicherüberlauf bei Inlinecode-Generierung.</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Reduzieren Sie die Anzahl der Busklemmen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Sollte der Fehler weiterhin bestehen, tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td>2</td>
<td>Busklemme(n) mit nicht unterstützter Datenstruktur</td>
<td>1. Ermitteln Sie die fehlerhafte Busklemme, indem Sie die Versorgungsspannung ausschalten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Stecken sie die Endklemme in die Mitte des Knotens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. --- Blinkt die LED weiter? ---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schalten Sie die Versorgungsspannung aus, und stecken Sie die Endklemme in die Mitte der ersten Hälfte des Knotens (zum Feldbuscontroller hin).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--- Blinkt die LED nicht? ---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schalten Sie die Versorgungsspannung aus, und stecken Sie die Endklemme in die Mitte der zweiten Hälfte des Knotens (vom Feldbuscontroller weg).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Wiederholen Sie den im Schritt 4 beschriebenen Vorgang mit halbierten Schrittweiten, bis die fehlerhafte Busklemme gefunden ist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Tauschen Sie die fehlerhafte Busklemme aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Erkundigen Sie sich nach einem Firmware-Update für den Feldbuscontroller.</td>
</tr>
<tr>
<td>3</td>
<td>Unbekannter Bausteintyp des Flash-Programmspeichers</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>4</td>
<td>Fehler beim Schreiben in den Flash-Speicher</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>5</td>
<td>Fehler beim Löschen eines Flash-Sektors</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
</tbody>
</table>
Fehlercode 1: „Hardware- und Konfigurationsfehler“

<table>
<thead>
<tr>
<th>Fehlernummer</th>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>differiert zu der, die beim letzten Hochlauf des Feldbuscontrollers ermittelt wurde.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Fehler beim Schreiben in das serielle EEPROM</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Ungültige Hardware-Firmware-Kombination</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Prüfsumme im seriellen EEPROM ungültig</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Initialisierung des seriellen EEPROM fehlgeschlagen</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Fehler beim Lesezugriff auf das serielle EEPROM</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Zeitüberschreitung beim Zugriff auf das serielle EEPROM</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Reduzieren Sie die Anzahl der entsprechenden Busklemmen auf ein zulässiges Maß.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung wieder ein.</td>
</tr>
</tbody>
</table>
Tabelle 43: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 2

<table>
<thead>
<tr>
<th>Fehlercode 2: „Prozessabbildüberschreitung“</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehler-argument</td>
<td>Fehler-beschreibung</td>
</tr>
<tr>
<td>1</td>
<td>nicht genutzt</td>
</tr>
</tbody>
</table>
| 2 | Maximale Prozessabbildgröße überschritten | 1. Schalten Sie die Versorgungsspannung des Knotens aus.
2. Reduzieren Sie die Anzahl der Busklemmen.
3. Schalten Sie die Versorgungsspannung ein. |

Tabelle 44: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 3

<table>
<thead>
<tr>
<th>Fehlercode 3: „Protokollfehler Klemmenbus“</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehler-argument</td>
<td>Fehler-beschreibung</td>
</tr>
</tbody>
</table>
| - | Klemmenbus-kommunikation gestört, fehlerhafte Baugruppe ist nicht identifizierbar | --- Befinden sich Potentialeinspeiseklemmen mit Busnetzteil (750-613) im Knoten? ---
1. Überprüfen Sie, ob diese Busklemmen korrekt mit Spannung versorgt werden.
2. Entnehmen Sie dieses dem Zustand der zugehörigen Status-LEDs.
--- Sind alle Busklemmen ordnungsgemäß angeschlossen oder befinden sich keine Busklemmen vom Typ 750-613 im Knoten? ---
1. Ermitteln Sie die fehlerhafte Busklemme, indem Sie die Versorgungsspannung ausschalten.
2. Stecken Sie die Endklemme in die Mitte des Knotens.
3. Schalten Sie die Versorgungsspannung wieder ein.
4. --- Blinkt die LED weiter? ---
Schalten Sie die Versorgungsspannung aus, und stecken Sie die Endklemme in die Mitte der ersten Hälfte des Knotens (zum Feldbuscontroller hin).
--- Blinkt die LED nicht? ---
Schalten Sie die Versorgungsspannung aus, und stecken Sie die Endklemme in die Mitte der zweiten Hälfte des Knotens (vom Feldbuscontroller weg).
5. Schalten Sie die Versorgungsspannung wieder ein.
6. Wiederholen Sie den im Schritt 4 beschriebenen Vorgang mit halbierten Schrittweiten, bis die fehlerhafte Busklemme gefunden ist.
7. Tauschen Sie die fehlerhafte Busklemme aus.
8. Befindet sich nur noch eine Busklemme am Feldbuscontroller und die LED blinkt, ist entweder diese Busklemme defekt oder der Feldbuscontroller. Tauschen Sie die defekte Komponente. |
Tabelle 45: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 4

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
</table>
2. Stecken Sie eine Busklemme mit Prozessdaten hinter den Feldbuscontroller.
3. Schalten Sie die Versorgungsspannung ein.
4. Beobachten Sie das signalierte Fehlerargument.
--- Wird kein Fehlerargument auf der I/O-LED ausgegeben? ---
5. Tauschen Sie den Feldbuscontroller aus.
--- Wird ein Fehlerargument auf der I/O-LED ausgegeben? ---
5. Ermitteln Sie die fehlerhafte Busklemme, indem Sie die Versorgungsspannung ausschalten.
6. Stecken Sie die Endklemme in die Mitte des Knotens.
7. Schalten Sie die Versorgungsspannung wieder ein.
8. - Blinkt die LED weiter? -
Schalten Sie die Versorgungsspannung aus, und stecken Sie die Endklemme in die Mitte der ersten Hälfte des Knotens (zum Feldbuscontroller hin).
--- Blinkt die LED nicht? ---
Schalten Sie die Versorgungsspannung aus, und stecken Sie die Endklemme in die Mitte der zweiten Hälfte des Knotens (vom Feldbuscontroller weg).
9. Schalten Sie die Versorgungsspannung wieder ein.
10. Wiederholen Sie den im Schritt 6 beschriebenen Vorgang mit halbierten Schrittweiten, bis die fehlerhafte Busklemme gefunden ist.
11. Tauschen Sie die fehlerhafte Busklemme aus.
12. Befindet sich nur noch eine Busklemme am Feldbuscontroller und die LED blinkt, ist entweder diese Busklemme defekt oder der Feldbuscontroller. Tauschen Sie die defekte Komponente. |

| n* | Es liegt eine Klemmenbusunterbrechung hinter der n-ten Busklemme mit Prozessdaten vor; die maximal unterstützte Anzahl ist erreicht, die nachfolgenden werden nicht mehr unterstützt. | 1. Schalten Sie die Versorgungsspannung des Knotens aus.
2. Reduzieren Sie die Anzahl der Busklemmen bis zur n-ten Busklemme mit Prozessdaten.
3. Schalten Sie die Versorgungsspannung ein. |

* Die Anzahl der Blinkimpulse (n) zeigt die Position der Busklemme an. Busklemmen ohne Daten werden nicht mitgezählt (z. B. Einspeiseklemme ohne Diagnose)
Tabelle 46: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 5

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2. Tauschen Sie die (n+1)-te Busklemme mit Prozessdaten aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung ein.</td>
</tr>
</tbody>
</table>

* Die Anzahl der Blinkimpulse (n) zeigt die Position der Busklemme an. Busklemmen ohne Daten werden nicht mitgezählt (z. B. Einspeiseklemme ohne Diagnose)

Tabelle 47: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 6

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Keine Antwort vom BootP-Server</td>
<td>1. Überprüfen Sie die Einstellungen des BootP-Servers.</td>
</tr>
<tr>
<td>2</td>
<td>ETHERNET-Controller nicht erkannt</td>
<td>1. Starten Sie den Feldbuscontroller durch Aus- und Einschalten der Versorgungsspannung neu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Wird der Fehler weiterhin gemeldet? Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td>3</td>
<td>Ungültige MAC-ID</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Wird der Fehler weiterhin gemeldet? Tauschen Sie den Feldbuscontroller aus.</td>
</tr>
<tr>
<td>5</td>
<td>Prozessabbild zu groß</td>
<td>1. Schalten Sie die Versorgungsspannung des Knotens aus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Entfernen Sie einige analoge oder komplexe Busklemmen aus dem Knoten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Schalten Sie die Versorgungsspannung ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Wird der Fehler weiterhin gemeldet und befinden sich analoge oder komplexe Busklemmen im Knoten, wiederholen Sie Schritt 1...3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Wird der Fehler weiterhin gemeldet und befinden sich keine analogen oder komplexen Busklemmen im Knoten, tauschen Sie den Feldbuscontroller aus.</td>
</tr>
</tbody>
</table>

Tabelle 48: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 7..8

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>nicht genutzt</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabelle 49: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 9

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ungültiger Maschinenbefehl</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stack-Überlauf</td>
<td>Es liegt eine Störung im Programmablauf vor.</td>
</tr>
<tr>
<td>3</td>
<td>Stack-Unterlauf</td>
<td>1. Wenden Sie sich an den WAGO-Support.</td>
</tr>
<tr>
<td>4</td>
<td>Unzulässiges Ereignis (NMI)</td>
<td></td>
</tr>
</tbody>
</table>

Fehlercode 10: "Fehler bei der SPS-Programmbearbeitung"

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Fehlerbeschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Offsetadresse für digitale Eingänge ungültig</td>
<td>1. Korrigieren Sie die Offsetadresse im zugehörigen Funktionsbaustein.</td>
</tr>
<tr>
<td>2</td>
<td>Offsetadresse für digitale Ausgänge ungültig</td>
<td>1. Korrigieren Sie die Offsetadresse im zugehörigen Funktionsbaustein.</td>
</tr>
</tbody>
</table>

10.1.2.1 **USR-LED**

Für die visuelle Ausgabe von Informationen steht dem Anwender die unterste Anzeige LED („USR“) zur Verfügung.

Die Ansteuerung der LED aus dem Anwenderprogramm erfolgt mit den Funktionen aus der WAGO-I/O-PRO-Bibliothek „Visual.lib“.

10.1.3 **Versorgungsspannungsstatus auswerten**

Im Einspeiseteil des Gerätes befinden sich zwei grüne LEDs zur Anzeige der Versorgungsspannungen.

Die LED „A“ zeigt die 24V-Versorgung des Feldbusknotens an.

Die LED „B“ bzw. „C“ meldet die Versorgung, die an den Leistungskontakten für die Feldseite zur Verfügung steht.
Tabelle 51: Diagnose des Versorgungsspannungsstatus – Abhilfe im Fehlerfall

<table>
<thead>
<tr>
<th>LED-Status</th>
<th>Bedeutung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grün</td>
<td>Die Betriebsspannung für das System ist vorhanden.</td>
<td>-</td>
</tr>
<tr>
<td>aus</td>
<td>Es ist keine Betriebsspannung für das System vorhanden.</td>
<td>Überprüfen Sie die Versorgungsspannung für das System (24 V und 0 V).</td>
</tr>
<tr>
<td>B oder C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grün</td>
<td>Die Betriebsspannung für die Leistungskontakte ist vorhanden.</td>
<td>-</td>
</tr>
<tr>
<td>aus</td>
<td>Es ist keine Betriebsspannung für die Leistungskontakte vorhanden.</td>
<td>Überprüfen Sie die Versorgungsspannung für die Leistungskontakte (24 V und 0 V).</td>
</tr>
</tbody>
</table>
10.2 Fehlerverhalten

10.2.1 Feldbusausfall

Ein Feldbus- und damit ein Verbindungsausfall liegt vor, wenn die eingestellte Reaktionszeit des Watchdogs ohne Anstoß durch die übergeordnete Steuerung abgelaufen ist. Dies kann beispielsweise passieren, wenn der Master abgeschaltet oder das Buskabel unterbrochen ist. Auch ein Fehler im Master kann zum Feldbusausfall führen. Es ist keine Verbindung über ETHERNET gegeben.

Der MODBUS-Watchdog überwacht die über das MODBUS-Protokoll laufende MODBUS-Kommunikation. Sofern der MODBUS-Watchdog konfiguriert und aktiviert wurde, wird ein Feldbusausfall durch das Leuchten der roten I/O-LED angezeigt.

Eine protokollunabhängige Feldbusüberwachung ist über den Funktionsblock 'FBUS_ERROR_INFORMATION' der Bibliothek 'Mod_com.lib' möglich, der die physikalische Verbindung zwischen Busklemmen und Feldbuscontroller überprüft und die Auswertung der Watchdog-Register im Steuerungsprogramm übernimmt. Der Klemmenbus bleibt funktionsfähig und die Prozessabbilder bleiben erhalten. Das Steuerungsprogramm kann autark abgearbeitet werden.

Abbildung 54: Funktionsblock zur Ermittlung des Feldbusausfalls

<table>
<thead>
<tr>
<th>FBUS_ERROR_INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBUS_ERROR</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>

'FBUS_ERROR' (BOOL) = FALSE = kein Fehler
 = TRUE = Feldbusausfall

'ERROR' (WORD)
 = 0 = kein Fehler
 = 1 = Feldbusausfall

Mit Hilfe dieser Funktionsblockausgänge und einem entsprechend programmierten Steuerungsprogramm kann der Knoten bei Feldbusausfall in einen sicheren Zustand geführt werden.
Information

Feldbusausfallerkennung über das MODBUS-Protokoll:
Detaillierte Informationen zu dem Watchdog-Register entnehmen Sie dem Kapitel „MODBUS-Funktionen“, „Watchdog (Verhalten bei Feldbusausfall)“.

Protokollunabhängige Feldbusausfall-Erkennung:
Die Bibliothek 'Mod_com.lib' mit dem Funktionsblock 'FBUS_ERROR_INFORMATION' ist standardmäßig im Setup der WAGO-I/O-PRO enthalten. Sie binden die Bibliothek über das Register „Ressourcen“ links unten auf der Arbeitsfläche ein. Klicken Sie auf Einfügen und weitere Bibliotheken. Die Mod_com.lib befindet sich im Ordner C:\Programme\WAGO Software\CODESYS V2.3\Targets\WAGO\Libraries\32_Bit

10.2.2 Klemmenbusfehler

Ein Klemmenbusfehler wird über die I/O-LED angezeigt.

I/O-LED blinkt rot:
Bei einem Klemmenbusfehler erzeugt der Feldbuscontroller eine Fehlermeldung (Fehlercode und Fehlerargument).
Ein Klemmenbusfehler entsteht beispielsweise durch eine herausgezogene Busklemme.
Wenn dieser Fehler während des Betriebes auftritt, verhalten sich die Ausgangsklemmen wie beim Klemmenbusstopp.
Wenn der Klemmenbusfehler behoben ist, läuft der Feldbuscontroller nach einem Aus- und Einschalten wie beim Betriebsstart hoch. Die Übertragung der Prozessdaten wird wieder aufgenommen und die Ausgänge im Knoten werden entsprechend gesetzt.
11 Feldbuskommunikation

Die Feldbuskommunikation zwischen Master-Anwendung und einem auf dem ETHERNET-Standard basierenden WAGO-Feldbuskoppler/-controller findet in der Regel über ein feldbusspezifisch implementiertes Anwendungsprotokoll statt.

Je nach Anwendung, kann dieses z. B. MODBUS/TCP (UDP), EtherNet/IP, BACnet/IP, KNX IP, PROFINET, sercos oder sonstiges sein.

Hinzu kommen zu dem ETHERNET-Standard und dem feldbusspezifischen Anwendungsprotokoll außerdem noch einige, für eine zuverlässige Kommunikation und Datenübertragung wichtige Kommunikationsprotokolle und darauf aufbauend noch weitere Protokolle für die Konfiguration und Diagnose des Systems, die in den ETHERNET basierenden WAGO-Feldbuskoppler/-controller implementiert sind.

Diese Protokolle werden in den weiteren Kapiteln näher erläutert.

11.1 Allgemeine ETHERNET-Informationen

ETHERNET ist eine Technologie, die sich für die Datenübertragung in der Informationstechnik und in der Bürokommunikation hervorragend bewährt und etabliert hat. Auch in dem privaten PC Bereich ist ETHERNET in kürzester Zeit weltweit der Durchbruch gelungen.

In den von WAGO entwickelten Feldbuskopplern/-controllern, die auf ETHERNET basieren, ist auf der Basis des TCP/IP-Stacks eine Vielzahl von Applikationsprotokollen implementiert.

Diese Protokolle ermöglichen dem Anwender Anwendungen (Master-Applikationen) durch standardisierte Schnittstellen zu erstellen und Prozessdaten über eine ETHERNET-Schnittstelle zu übermitteln.

Informationen, wie den Aufbau des Feldbusknoten, Netzstatistiken und Diagnoseinformationen, sind in den ETHERNET Feldbuskopplern/-controllern gespeichert und können als HTML-Seiten über einen Web Browser (Microsoft Internet-Explorer, Netscape Navigator,..) direkt aus diesen Seiten ausgelesen werden.

Für Feldbuskoppler/-controller, die ein internes Filesystem besitzen, können über FTP aber auch eigens erstellte Webseiten in die Feldbuskoppler/-controller geladen werden.

11.1.1 Netzwerkaufbau – Grundlagen und Richtlinien

Für den Aufbau eines einfachen ETHERNET Netzwerkes benötigen Sie einen PC mit Netzwerkkarte, ein Verbindungskabel, einen ETHERNET Feldbusknoten und ein DC 24 V Netzgerät für die Spannungsversorgung.

Jeder Feldbusknoten besteht aus einem Feldbuskoppler/-controller, und einer Anzahl entsprechend benötigter I/O-Module bzw. Busklemmen.

An die digitalen oder analogen Ein- und Ausgänge werden auf der Feldseite Sensoren und Aktoren angeschlossen. Über diese werden die Prozesssignale erfasst bzw. können Signale an den Prozess ausgegeben werden.

Die Feldbuskommunikation zwischen Master-Anwendung und Feldbuskoppler/-controller findet dann über das feldbusspezifisch implementierte
Anwendungsprotokoll statt, also z. B. über MODBUS/TCP (UDP), EtherNet/IP, BACnet, KNXnet/IP, PROFINET, Powerlink, sercos oder sonstige.

11.1.1.1 Übertragungsmedien

Allgemeine ETHERNET-Übertragungsstandards

Tabelle 52: ETHERNET-Übertragungsstandards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Base5</td>
<td>Verwendet ein 24 AWG UTP (Verdrilltes Adernpaar) für ein 1Mbit/s Basisbandsignal für Entfernungen bis zu 500 m (250 m pro Segment) in einer physischen Stern-Topologie.</td>
</tr>
<tr>
<td>10Base2</td>
<td>Verwendet ein 5 mm 50 Ohm Koaxialkabel für ein 10 Mbit/s Basisbandsignal für Entfernungen bis zu 185 m in einer physischen Bus-Topologie (oft als Thin ETHERNET, ThinNet oder CheaperNet bezeichnet).</td>
</tr>
<tr>
<td>10Base5</td>
<td>Verwendet ein 10 mm 50 Ohm Koaxialkabel für 10 Mbit/s ein Basisbandsignal für Entfernungen bis zu 500 m in einer physischen Bus-Topologie (oft als Thick ETHERNET bezeichnet).</td>
</tr>
<tr>
<td>10Base-F</td>
<td>Verwendet ein Glasfaserkabel für ein 10 Mbit/s Basisbandsignal für Entfernungen bis zu 4 km in einer physischen Stern-Topologie (Es gibt drei Unterspezifikationen: 10Base-FL für Glasfaser-Link, 10Base-FB für Glasfaser-Backbone und 10Base-FP für Glasfaser-passiv).</td>
</tr>
<tr>
<td>10Base-T</td>
<td>Verwendet ein 24 AWG UTP oder S-UTP (Verdrilltes Adernpaar) für ein 10 Mbit/s Basisbandsignal für Entfernungen bis zu 100 m in einer physischen Stern-Topologie.</td>
</tr>
<tr>
<td>10Broad36</td>
<td>Verwendet ein 75 Ohm Koaxialkabel für 10 Mbit/s ein Breitbandsignal für Entfernungen bis zu 1800 m (oder 3600 m mit Doppelkabeln) in einer physischen Bus-Topologie.</td>
</tr>
<tr>
<td>100BaseTX</td>
<td>Spezifiziert die 100Mbit/s Übertragung auf 2 Aderpaaren über eine, mit Komponenten der Kategorie 5 realisierte Verkabelung. Kabel, RJ-45-Wanddosen, Patchpanel usw. müssen gemäß dieser Kategorie für eine Übertragungsfrequenz von mindestens 100MHz ausgelegt sein.</td>
</tr>
</tbody>
</table>

Darüber hinaus gibt es noch weitere Übertragungsstandards, wie z. B.: 100Base-T4 (Fast-ETHERNET über verdrillte Adernpaare), 100Base-FX (Fast-ETHERNET über Lichtwellenleiter) oder P802.11 (Wireless LAN) für eine drahtlose Übertragung.

10Base-T, 100BaseTX

Für den WAGO-ETHERNET-Feldbusknoten kann entweder der 10Base-T-Standard oder 100BaseTX genutzt werden.

S-UTP-Kabel (Screened-Unshielded Twisted Pair) sind einmalgeschirmte Kabel der Kategorie 5 mit einer Gesamtabschirmung um alle verdrillten ungeschirmten Adernpaare und einer Impedanz von 100 Ohm.
STP-Kabel (Shielded Twisted Pair) sind symmetrische Kabel der Kategorie 5 mit verseilten und einzeln geschirmten Adernpaaren, ein Gesamtschirm ist nicht vorhanden.

Verkabelung der Feldbusknoten

Für den direkten Anschluss eines Feldbusknoten an die Netzwerkkarte des PC benötigen Sie gegebenenfalls ein sogenanntes Cross-Over-Kabel.

Abbildung 55: Direkter Anschluss eines Knoten mit Cross-Over-Kabel

Abbildung 56: Anschluss eines Knoten über ein Hub mit parallelen Kabeln

Hinweis

Maximale Kabellänge beachten!

Beachten Sie, dass die Kabellänge zwischen Feldbus-Clients und Hub ohne Zwischenschalten von Signalaufbereitungssystemen (z.B. Repeater) maximal 100 m betragen darf. Für größere Netzwerkausdehnungen sind in dem ETHERNET-Standard verschiedene Möglichkeiten beschrieben.
11.1.1.2 Netzwerk-Topologie

Mit 10Base-T, bzw. 100BaseTX werden laut ETHERNET-Standard mehrere Stationen (Knoten) sternförmig verkabelt. Aus diesem Grund sollen hier lediglich die Stern-Topologie und für größere Netzwerke der Aufbau einer Baum-Topologie genauer betrachtet werden.

Stern-Topologie

Bei der Stern-Topologie handelt es sich um ein Netz, an dem alle Stationen mit einem zentralen Knoten verbunden sind. Dazu wird ein Hub wie ein normaler Rechner an eine Bus-Architektur angeschlossen bzw. verläuft der Bus innerhalb des Hubs.

Abbildung 57: Stern-Topologie

Neben der einfachen Realisierung liegen die Vorteile einer solchen Anwendung in der Erweiterbarkeit eines vorhandenen Netzes. Es kann ohne einen Ausfall des Netzes eine Station zugefügt bzw. entnommen werden. Weiterhin wird bei einer defekten Leitung ausschließlich die Kommunikation zur betreffenden Station beeinträchtigt und somit die Ausfallsicherheit des gesamten Netzes deutlich erhöht.

Mit der Stern-Topologie können sehr leicht administrativ zusammengehörende Gruppen gebildet, in hierarchischen Ebenen zusammengefasst und baumartig vernetzt werden.

Baum-Topologie

Bei der Baum-Topologie handelt es sich um eine Struktur, die für größere Netzwerke, z.B. Unternehmen oder Gebäude, eingesetzt wird. Dabei werden verschiedene kleinere Netzwerke beispielsweise über Router hierarchisch wie ein Baum (Äste, Zweige und Stamm) miteinander verbunden.
Ein baumartiges Netzwerk wird in drei verschiedene Bereiche aufgeteilt:

Tertiärverkabelung:

Bei der Tertiärverkabelung handelt es sich z. B. um die Vernetzung einer Etage. Das Datenaufkommen ist in diesem Bereich am geringsten.

Sekundärverkabelung:

Die Sekundärverkabelung ist beispielsweise die Verbindung der einzelnen Etagen eines Gebäudes miteinander. Im Vergleich zur Primärverkabelung ist das Datenaufkommen hier deutlich geringer.

Primärverkabelung:

Verkabelungsrichtlinien

Allgemeine Richtlinien für den Netzwerkaufbau eines LAN gibt die „Strukturierte Verkabelung“, vor. Darin sind maximal zulässige Kabellängen für die Gelände-, Gebäude- und Etagenverkabelung festgelegt.

Die Verkabelungsstandards definieren einen Geltungsbereich mit einer geographischen Ausdehnung von bis zu 3 km und für eine Bürofläche von bis zu 1 Mio. Quadratmetern mit 50 bis 50.000 Endgeräten. Darüber beschreiben sie Empfehlungen für den Aufbau eines Verkabelungssystems.

11.1.1.3 Koppelmodule

Es gibt eine Reihe von Koppelmodulen, die bei dem Aufbau eines ETHERNET-Netzwerks eine flexible Gestaltung ermöglichen. Zudem verfügen sie über wichtige Funktionalitäten, die teilweise sehr ähnlich sind.

Deshalb soll die richtige Wahl und die angemessene Verwendung der Module durch eine tabellarische Gegenüberstellung vereinfacht werden.

Tabelle 54: Gegenüberstellung der Koppelmodule für Netzwerke

<table>
<thead>
<tr>
<th>Modul</th>
<th>Eigenschaft/Verwendung</th>
<th>ISO/OSI-Schicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeater</td>
<td>Verstärker zur Signalauffrischung, Verbindung auf physikalischer Ebene.</td>
<td>1</td>
</tr>
<tr>
<td>Bridge</td>
<td>Segmentierung von Netzen um die Längenausdehnung zu erweitern.</td>
<td>2</td>
</tr>
<tr>
<td>Switch</td>
<td>Multiport-Bridge, d. h. jeder Port verfügt über eine separate Bridge-Funktion. Trennt Netzwerksegmente logisch und verringert dadurch die Netzbelastung. Macht ETHERNET bei konsequentem Einsatz kollisionsfrei.</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Hub</td>
<td>Dient dem Aufbau von sternförmigen Topologien, unterstützt unterschiedliche Übertragungsmedien, verhindert keine Netzkollisionen.</td>
<td>2</td>
</tr>
<tr>
<td>Gateway</td>
<td>Verbindung zweier herstellerspezifischer Netze mit unterschiedlicher Soft- und Hardware (z. B. ETHERNET und Interbus-Loop).</td>
<td>4-7</td>
</tr>
</tbody>
</table>

11.1.1.4 ETHERNET-Übertragungsmodus

Einige WAGO-Feldbuskoppler/-controller, die auf ETHERNET basieren, unterstützen sowohl 10Mbit/s als auch 100Mbit/s Übertragungsrate im Voll- bzw. Halbduplex Betrieb.

Um eine sichere und schnelle Übertragung zu gewährleisten, müssen diese Feldbuskoppler/-controller und dessen Link-Partner auf den gleichen Übertragungsmodus konfiguriert sein.
Hinweis

Aufangepassten ETHERNET-Übertragungsmodus achten!
Achten Sie bei der Konfiguration darauf, dass die Übertragungsmodi der Link-Partner übereinstimmen. Eine fehlerhafte Konfiguration des Übertragungsmodus kann einen Linkverlust, eine schlechte Netzwerk-Performance oder ein fehlerhaftes Verhalten des Feldbuskopplers/-controllers zur Folge haben.

Der ETHERNET-Standard IEEE 802.3u sieht zwei Möglichkeiten zur Konfiguration der Übertragungsmodi vor:

- Statische Konfiguration
- Dynamische Konfiguration

Statische Konfiguration der Übertragungsart

Bei der statischen Konfiguration werden beide Link-Partner auf eine statische Übertragungsrate und Duplex-Modus eingestellt. Dabei sind folgende Konfigurationen möglich:

- 10 Mbit/s, Halbduplex
- 10 Mbit/s, Vollduplex
- 100 Mbit/s, Halbduplex
- 100 Mbit/s, Vollduplex

Dynamische Konfiguration der Übertragungsart

Hinweis

Autonegation aktivieren!
Achten Sie für ein einwandfreies Funktionieren der dynamischen Konfiguration darauf, dass bei beiden Kommunikationspartnern die Betriebsart der Autonegotiation unterstützt wird und auch aktiviert ist.
Konfigurationsfehler bei der Übertragungsart

Die folgende Liste zeigt eine Aufstellung unzulässiger Konfigurationen:

Tabelle 55: Konfigurationsfehler bei der Übertragungsart

<table>
<thead>
<tr>
<th>Problem</th>
<th>Ursache</th>
<th>Symptome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlanpassung der Übertragungsrate</td>
<td>Tritt auf, wenn ein Link-Partner mit 10 Mbit/s und der andere mit 100 Mbit/s konfiguriert wurde.</td>
<td>Linkausfall</td>
</tr>
<tr>
<td>Fehlanpassung des Duplex-Modus</td>
<td>Tritt auf, wenn ein Link-Partner im VollDuplex- und der andere im HalbDuplex-Betrieb arbeitet</td>
<td>Fehlerhafte oder verworfene Datenpakete sowie Kollisionen auf dem Medium</td>
</tr>
</tbody>
</table>

11.1.1.5 Wichtige Begriffe

Datensicherheit

Soll ein internes Netz (Intranet) an das öffentliche Netz (z. B. Internet) angeschlossen werden, so ist die Sicherheit der Daten ein sehr wichtiger Aspekt. Durch eine sogenannte Firewall können unerwünschte Zugriffe ausgeschlossen werden.

Bei der Firewall handelt es sich um eine Software oder eine Netzwerkkomponente, die ähnlich einem Router als Koppelglied zwischen Intranet und öffentlichem Netzwerk geschaltet wird. Die Firewall ist in der Lage, Zugriffe ins jeweils andere Netz zu begrenzen oder auch komplett zu sperren, abhängig von der Zugriffsrichtung, dem benutzten Dienst sowie der Identifikation des Netzzteilnehmers.

Echtzeitfähigkeit

Oberhalb der Feldbus-Systemebene sind i. Allg. relativ große Datenmengen zu übertragen. Die zulässigen Verzögerungszeiten dürfen ebenfalls verhältnismäßig große Werte annehmen (0,1 … 10 Sekunden).

Für das Industrie-ETHERNET innerhalb der Feldbus-Systemebene wird hingegen ein Echtzeitverhalten gefordert. Bei ETHERNET kann, z.B. durch die Einschränkung der Busbelastung (< 10 %) oder durch ein Master-Slave-Prinzip, die Erfüllung der Echtzeitanforderungen nahezu realisiert werden.

Shared ETHERNET

![Abbildung 59: Prinzip von Shared ETHERNET](image)

Predictable ETHERNET

Switched ETHERNET

Bei einem Switched ETHERNET wird zur Kopplung mehrerer Feldbusknoten ein Switch eingesetzt. Gelangen zu dem Switch Daten aus einem Netzwerksegment, so speichert er diese und prüft, in welches Segment und zu welchem Knoten diese Daten gesendet werden sollen.

Abbildung 60: Prinzip von Switched ETHERNET
11.1.2 Netzwerkkommunikation

11.1.2.1 ETHERNET-Datenpaket

<table>
<thead>
<tr>
<th>Präambel</th>
<th>ETHERNET-Header</th>
<th>ETHERNET-Nutzdatenbereich</th>
<th>Prüfsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Byte</td>
<td>14 Byte</td>
<td>46 … 1500 Byte</td>
<td>4 Byte</td>
</tr>
</tbody>
</table>

Die Präambel dient zur Synchronisation zwischen Sende- und Empfangsstation.

Der ETHERNET-Header beinhaltet die MAC-Adressen des Senders und des Empfängers und ein Typfeld. Das Typfeld dient zur Identifikation des nachfolgenden Protokolls mittels einer eindeutigen Kodierung (z. B. 0x0800 = Internet Protokoll).

11.1.2.2 Adressierung (MAC-ID)

Jeder ETHERNET basierende Feldbuskoppler/-controller von WAGO erhält bereits bei seiner Fabrikation eine einmalige und weltweit eindeutige physikalische ETHERNET-Adresse, auch MAC-ID (Media Access Control Identity) genannt.

Diese kann von dem Netzwerkbetriebssystem zur Adressierung auf Hardware-Ebene verwendet werden.

Die Adresse besitzt eine feste Länge von 6 Byte (48 Bit) und beinhaltet den Adresstyp, die Kennzeichnung für den Hersteller und die Seriennummer.

Beispiel für die MAC-ID eines WAGO-ETHERNET TCP/IP-Controllers (hexadezimal): 00 : 30 : DE : 00 : 00 : 01

Die Adressierung verschiedener Netze ist mit ETHERNET nicht möglich. Soll ein ETHERNET-Netzwerk mit anderen Netzen verbunden werden, muss deshalb mit übergeordneten Protokollen gearbeitet werden.

Hinweis: Netzverbindungen über Router herstellen!
Um zwei oder mehr Datennetze miteinander zu verbinden, setzen Sie Router ein.
11.1.2.3 Buszugriffsverfahren CSMA/CD

Der Zugriff der Feldbusknoten auf den Bus geschieht beim ETHERNET-Standard über das sogenannte Konkurrenzverfahren CSMA/CD (Carrier Sense Multiple Access/ Collision Detection).

- **Carrier Sense:** Der Sender horcht auf dem Bus.
- **Multiple Access:** Mehrere Sender können auf den Bus zugreifen.
- **Collision Detection:** Eine „Kollision“ wird erkannt.

Dabei kann jede Station eine Nachricht senden, nachdem sie sich davon überzeugt hat, dass das Übertragungsmedium frei ist. Treten Kollisionen von Datenpaketen durch zeitgleiches Senden mehrerer Stationen auf, sorgt CSMA/CD dafür, dass solche erkannt und die Datenübertragung wiederholt wird.

Für eine sichere Datenübertragung unter Industriebedingungen reicht das jedoch nicht aus. Damit die Kommunikation und Datenübertragung über ETHERNET zuverlässig erfolgen kann, werden verschiedene Kommunikationsprotokolle benötigt.
11.1.3 Protokoll-Schichtenmodell (Beispiel)

In der Darstellung des Schichtenmodells soll anhand eines Beispiels (MODBUS-Protokoll und EtherNet/IP) die Einordnung und die Zusammenhänge der in einem ETHERNET basierenden WAGO-Feldbuskoppler/-controller verdeutlicht werden.

In diesem Beispiel kann die Kommunikation entweder über das MODBUS-Protokoll oder über EtherNet/IP erfolgen.

1 ETHERNET:

Tabelle 57: Physical Layer

<table>
<thead>
<tr>
<th>(1)</th>
<th>ETHERNET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(physikalisches Interface, CSMA/CD)</td>
</tr>
</tbody>
</table>

2 IP:

Tabelle 58: Network Layer

<table>
<thead>
<tr>
<th>(2)</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>ETHERNET</td>
</tr>
<tr>
<td></td>
<td>(physikalisches Interface, CSMA/CD)</td>
</tr>
</tbody>
</table>

3 TCP/UDP:
- TCP: (Transmission Control Protocol)
- UDP: (User Datagram Protocol)
Viele Programme nutzen beide Protokolle. Wichtige Status-Informationen werden über die zuverlässige TCP-Verbindung gesendet, während der Hauptstrom der Daten über UDP versendet wird.

<table>
<thead>
<tr>
<th>Tabelle 59: Transport Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) TCP/UDP</td>
</tr>
<tr>
<td>(2) IP</td>
</tr>
<tr>
<td>(1) ETHERNET</td>
</tr>
<tr>
<td>(physikalisches Interface, CSMA/CD)</td>
</tr>
</tbody>
</table>

4 Konfigurations-, Diagnose und Anwendungsprotokolle:

Für die Anwendung in der industriellen Datenkommunikation sind in dieser Darstellung als Beispiel die Protokolle MODBUS/TCP (UDP) und EtherNet/IP implementiert.

Das MODBUS-Protokoll setzt dabei ebenfalls direkt auf TCP (UDP)/IP auf,

Tabelle 60: Application Layer

<table>
<thead>
<tr>
<th>Mail-Client</th>
<th>WWW-Browser</th>
<th>..</th>
<th>MODBUS</th>
<th>CIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) SMTP</td>
<td>HTTP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) TCP/UDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) ETHERNET (physikalisches Interface, CSMA/CD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datenstruktur

Abbildung 61: Aufbau der Datenstrukturen bei verschachtelten Protokollen
11.1.4 Kommunikationsprotokolle

11.1.4.1 TCP (Transmission Control Protocol)

TCP-Datenpaket

Der Paketkopf eines TCP-Datenpaketes besteht aus mindestens 20 Byte und enthält unter anderem die Portnummer der Applikation des Absenders sowie die des Empfängers, die Sequenznummer und die Acknowledgement-Nr. Das so entstandene TCP-Paket wird in den Nutzdatenbereich eines IP-Paketes eingesetzt, so dass ein TCP/IP-Paket entsteht.

TCP-Portnummern

11.1.4.2 UDP (User Datagram Protocol)

Das UDP-Protokoll ist, wie auch das TCP-Protokoll, für den Datentransport zuständig. Im Vergleich zum TCP-Protokoll ist UDP nicht verbindungsorientiert. Das heißt es gibt keine Kontrollmechanismen bei dem Datenaustausch zwischen Sender und Empfänger. Der Vorteil dieses Protokolls liegt in der Effizienz der übertragenen Daten und damit in der resultierenden höheren Verarbeitungsgeschwindigkeit.
11.1.5 Konfigurations- und Diagnoseprotokolle

11.1.5.1 BootP (Bootstrap Protocol)

Über das Protokoll wird eine Broadcast-Anfrage auf Port 67 (BootP-Server) gesendet, welche die Hardware-Adresse (MAC-ID) des Feldbuskopplers/-controllers enthält.

Der Feldbuskoppler/-controller lauscht auf dem vorgegebenen Port 68 auf die Antwort des BootP-Servers. Ankommende Pakete enthalten unter anderem die IP-Adresse und die MAC-Adresse des Feldbuskopplers/-controllers. An der MAC-Adresse erkennt ein Feldbuskoppler/-controller, ob die Nachricht für ihn bestimmt ist, und übernimmt bei Übereinstimmung die gesendete IP-Adresse in sein Netzwerk-Interface.

Hinweis
IP-Adressvergabe über BootP unter Windows und Linux möglich!
Sie können eine IP-Adresse mittels BootP-Server sowohl unter Windows-als auch unter Linux-Betriebssystemen vergeben.

Information
Weitere Information zur Adressvergabe mit BootP-Server
Die Vorgehensweise der Adressvergabe mit einem BootP-Server ist detailliert in dem Kapitel „Feldbusknoten in Betrieb nehmen“ beschrieben.

Der BootP-Client dient zum dynamischen Konfigurieren der Netzwerkparameter. Der ETHERNET TCP/IP-Feldbuscontroller besitzt einen BootP-Client, der neben der Standard-Option „IP-Adresse“ die folgenden Optionen unterstützt:
Tabelle 61: BootP-Optionen

<table>
<thead>
<tr>
<th>Option</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OPT1]</td>
<td>Subnetzmaseke 32 Bit Adressmaske, die anzeigt, welche Bits der IP-Adresse das Netzwerk und welche die Netzwerkstationen bestimmen.</td>
</tr>
<tr>
<td>[OPT2]</td>
<td>Zeitzone Zeitverschiebung zwischen der lokalen Zeit und der UTC (Universal Time Coordinated).</td>
</tr>
<tr>
<td>[OPT12]</td>
<td>Hostname Der Name des Hosts ist die eindeutige Bezeichnung eines Rechners in einem Netzwerk. Der Hostname kann bis zu 32 Zeichen enthalten.</td>
</tr>
<tr>
<td>[OPT15]</td>
<td>Domainename Der Name der Domaine ist die eindeutige Bezeichnung eines Netzwerkes. Der Domainename kann bis zu 32 Zeichen enthalten.</td>
</tr>
<tr>
<td>[OPT42]</td>
<td>NTP-Server Option nicht unterstützt.</td>
</tr>
</tbody>
</table>

11.1.5.2 HTTP (Hypertext Transfer Protocol)

Der auf dem Feldbuskoppler/-controller implementierte HTTP-Server dient zum Auslesen der im Feldbuskoppler/-controller abgespeicherten HTML-Seiten. Die HTML-Seiten geben Auskunft über den Feldbuskoppler/-controller (Zustand, Konfiguration), das Netzwerk und das Prozessabbild.

Auf einigen HTML-Seiten können auch Feldbuskoppler/-controller-Einstellungen über das Web-based Management-System festgelegt und geändert werden, z. B., ob die Netzwerk-Konfiguration des Feldbuskoppler/-controller über das DHCP, das BootP-Protokoll oder aus den gespeicherten Daten im EEPROM erfolgen soll.

Der HTTP-Server benutzt die Portnummer 80.
11.2 MODBUS-Funktionen

11.2.1 Allgemeines

MODBUS ist ein herstellerunabhängiger, offener Feldbusstandard für vielfältige Anwendungen in der Fertigungs- und Prozessautomation.

Das MODBUS-Protokoll ist nach dem aktuellen Internet-Draft der IETF (Internet Engineering Task Force) implementiert und erfüllt folgende Funktionen:

- Übermitteln des Prozessab bildes
- Übermitteln der Feldbusvariablen
- Übermitteln verschiedener Einstellungen und Informationen des Kopplers/Controllers über den Feldbus

Der Datentransport in der Feldebene erfolgt über TCP sowie über UDP.

Das MODBUS/TCP-Protokoll ist eine Variante des MODBUS-Protokolls, das für die Kommunikation über TCP/IP-Verbindungen optimiert wurde.

Alle Datenpakete werden über eine TCP-Verbindung mit der Portnummer 502 gesendet.

MODBUS/TCP-Datenpaket

Der allgemeine MODBUS/TCP-Header stellt sich folgendermaßen dar:

Tabelle 62: MODBUS/TCP-Header

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8...n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kennung (wird vom Empfänger eingetragen)</td>
<td>Protokollkennung (immer 0 für MODBUS/TCP)</td>
<td>Feldlänge (Highbyte, Lowbyte)</td>
<td>Einheitenkennung (Slave-Adresse)</td>
<td>MODBUS-Funktionscode</td>
</tr>
</tbody>
</table>

Information

Der Telegrammaufbau ist spezifisch für die einzelnen Funktionen und deshalb detailliert in den Beschreibungen der MODBUS-Funktionscodes erläutert.

Für das MODBUS-Protokoll werden 4 Verbindungen über TCP zur Verfügung gestellt. Damit ist es möglich, von 4 Stationen zeitgleich digitale und analoge Ausgangsdaten an einem Feldbusknoten direkt auszulesen und spezielle Funktionen durch einfache MODBUS-Funktionscodes auszuführen.

Das MODBUS-Protokoll basiert dabei im Wesentlichen auf den folgenden Grunddatentypen:

Tabelle 63: Grunddatentypen des MODBUS-Protokolls

<table>
<thead>
<tr>
<th>Datentyp</th>
<th>Länge</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Inputs</td>
<td>1 Bit</td>
<td>Digitale Eingänge</td>
</tr>
<tr>
<td>Coils</td>
<td>1 Bit</td>
<td>Digitale Ausgänge</td>
</tr>
<tr>
<td>Input Register</td>
<td>16 Bit</td>
<td>Analog Eingänge</td>
</tr>
<tr>
<td>Holding Register</td>
<td>16 Bit</td>
<td>Analog Ausgänge</td>
</tr>
</tbody>
</table>

Für jeden Grunddatentyp sind ein oder mehr Funktionscodes definiert.

Mit diesen Funktionen können gewünschte binäre oder analoge Ein- und Ausgangsdaten und interne Variablen aus dem Feldbusknoten gesetzt oder direkt ausgelesen werden.

Tabelle 64: Auflistung der in dem Feldbuscontroller realisierten MODBUS-Funktionen

<table>
<thead>
<tr>
<th>Funktionscode</th>
<th>Funktionsname</th>
<th>Zugriffsart und -beschreibung</th>
<th>Zugriff auf Ressourcen</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC1 0x01</td>
<td>Read Coils</td>
<td>Lesen eines einzelnen Bit</td>
<td>R: Prozessabbild, PFC-Variablen</td>
</tr>
<tr>
<td>FC2 0x02</td>
<td>Read Discrete Inputs</td>
<td>Lesen mehrerer Eingangsbits</td>
<td>R: Prozessabbild, PFC-Variablen</td>
</tr>
<tr>
<td>FC3 0x03</td>
<td>Read Holding Registers</td>
<td>Lesen mehrerer Eingangsregister</td>
<td>R: Prozessabbild, PFC-Variablen, Interne Variablen, NOVRAM</td>
</tr>
<tr>
<td>FC4 0x04</td>
<td>Read Input Registers</td>
<td>Lesen mehrerer Eingangsregister</td>
<td>R: Prozessabbild, PFC-Variablen, Interne Variablen, NOVRAM</td>
</tr>
<tr>
<td>FC5 0x05</td>
<td>Write Single Coil</td>
<td>Schreiben eines einzelnen Ausgangsbits</td>
<td>W: Prozessabbild, PFC-Variablen</td>
</tr>
<tr>
<td>FC6 0x06</td>
<td>Write Single Register</td>
<td>Schreiben eines einzelnen Ausgangsregister</td>
<td>W: Prozessabbild, PFC-Variablen, Interne Variablen, NOVRAM</td>
</tr>
<tr>
<td>FC7 0x07</td>
<td>Read Exception Status</td>
<td>Lesen der ersten 8 Eingangsbits</td>
<td>R: Prozessabbild, PFC-Variablen</td>
</tr>
<tr>
<td>FC11 0x0B</td>
<td>Get Comm Event Counters</td>
<td>Kommunikationseigniszähler</td>
<td>R: Keine</td>
</tr>
<tr>
<td>FC15 0x0F</td>
<td>Write Multiple Coils</td>
<td>Schreiben mehrerer Ausgangsbits</td>
<td>W: Prozessabbild, PFC-Variablen</td>
</tr>
<tr>
<td>FC16 0x10</td>
<td>Write Multiple Registers</td>
<td>Schreiben mehrerer Ausgangsregister</td>
<td>W: Prozessabbild, PFC-Variablen, Interne Variablen, NOVRAM</td>
</tr>
<tr>
<td>FC23 0x17</td>
<td>Read/Write Multiple Registers</td>
<td>Lesen und Schreiben mehrerer Ausgangsregister</td>
<td>R/W: Prozessabbild, PFC-Variablen, NOVRAM</td>
</tr>
</tbody>
</table>
Um eine gewünschte Funktion auszuführen, wird der entsprechende Funktionscode und die Adresse des ausgewählten Ein- oder Ausgangskanals angegeben.

Hinweis

Bei der Adressierung auf das verwendete Zahlensystem achten!
Die aufgeführten Beispiele verwenden als Zahlenformat das Hexadezimalsystem (Bsp.: 0x000). Die Adressierung beginnt mit 0. Je nach Software und Steuerung kann das Format und der Beginn der Adressierung variieren. Alle Adressen sind in diesem Fall dementsprechend umzurechnen.
11.2.2 Anwendung der MODBUS-Funktionen

Die grafische Übersicht zeigt anhand eines exemplarischen Feldbusknotens den Zugriff einiger MODBUS-Funktionen auf die Daten des Prozessabbildes.

Abbildung 62: Anwendung von MODBUS-Funktionen für einen Feldbuskoppler/-controller

Hinweis
Registerfunktionen für analogue Signale, Coil-Funktionen für binäre Signale verwenden!
Es ist sinnvoll, auf die analogen Signale mit Registerfunktionen ① und auf die binären Signale mit Coil-Funktionen ② zuzugreifen. Wird auf die binären Signale lesend oder schreibend mit Registerfunktionen ③ zugreifen, verschieben sich die Adressen, sobald weitere analoge Busklemmen an dem Feldbuskoppler/-controller betrieben werden.
11.2.3 Beschreibung der MODBUS-Funktionen

Alle implementierten MODBUS-Funktionen werden in der folgenden Weise ausgeführt:

1. Mit der Eingabe eines Funktionscodes stellt der MODBUS/TCP-Master (z. B. ein PC) eine entsprechende Anfrage (Request) an den WAGO-Feldbusknoten.

2. Der WAGO-Feldbusknoten sendet ein Telegramm als Antwort (Response) an den Master zurück.

Empfängt der WAGO-Feldbusknoten eine fehlerhafte Anfrage, sendet dieser ein Fehlertelegramm (Exception) an den Master zurück. Dabei hat der im Fehlertelegramm befindliche Exception-Code die folgende Bedeutung:

<table>
<thead>
<tr>
<th>Exception-Code</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>Illegal function</td>
</tr>
<tr>
<td>0x02</td>
<td>Illegal data address</td>
</tr>
<tr>
<td>0x03</td>
<td>Illegal data value</td>
</tr>
<tr>
<td>0x04</td>
<td>Slave device failure</td>
</tr>
<tr>
<td>0x05</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>0x06</td>
<td>Server busy</td>
</tr>
<tr>
<td>0x08</td>
<td>Memory parity error</td>
</tr>
<tr>
<td>0x0A</td>
<td>Gateway path unavailable</td>
</tr>
<tr>
<td>0x0B</td>
<td>Gateway target device failed to respond</td>
</tr>
</tbody>
</table>

In den folgenden Kapiteln wird für jeden Funktionscode der Telegrammaufbau von Request, Response und Exception mit Beispielen beschrieben.

Hinweis

Lesen und Schreiben der Ausgänge bei FC1 bis FC4 auch durch Hinzuaddieren eines Offsets möglich!
Bei den Lesefunktionen (FC1 ... FC4) können Sie zusätzlich die Ausgänge schreiben und zurücklesen, indem Sie für Adressen in dem Bereich [0 hex ... FF hex] ein Offset von 200hex (0x0200) und für Adressen in dem Bereich [6000 hex ... 62FChex] ein Offset von 1000hex (0x1000) zu der MODBUS-Adresse hinzuaddieren.
11.2.3.1 Funktionscode FC1 (Read Coils)

Diese Funktion liest den Inhalt mehrerer Eingangs- und Ausgangsbits.

Aufbau des Request

Die Anfrage bestimmt die Startadresse und die Anzahl der zu lesenden Bits. Beispiel: Eine Anfrage, mit welcher Bit 0 bis Bit 7 gelesen werden.

Tabelle 66: Aufbau des Request für den Funktionscode FC1

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0006</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x01</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Bit count</td>
<td>0x0008</td>
</tr>
</tbody>
</table>

Aufbau der Response

Die aktuellen Werte der abgefragten Bits werden in das Datenfeld geschrieben. Eine 1 entspricht dabei dem Zustand ON und eine 0 dem Zustand OFF. Das niederwertigste Bit des ersten Datenbytes enthält das erste Bit der Anfrage. Die anderen Bits folgen aufsteigend. Falls die Anzahl der Eingänge kein Vielfaches von 8 ist, werden die verbleibenden Bits des letzten Datenbytes mit Nullen aufgefüllt.

Tabelle 67: Aufbau der Response für den Funktionscode FC1

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x01</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Byte count</td>
<td>0x01</td>
</tr>
<tr>
<td>Byte 9</td>
<td>Bit values</td>
<td>0x12</td>
</tr>
</tbody>
</table>

Der Status der Eingänge 7 bis 0 wird als Byte-Wert 0x12 oder Binärwert 0001 0010 angezeigt. Eingang 7 ist das Bit mit dem höchsten Wert, Eingang 0 ist das Bit mit dem niedrigsten Wert dieses Bytes. Die Zuordnung erfolgt von 7 bis 0 wie folgt:

Tabelle 68: Zuordnung der Eingänge

<table>
<thead>
<tr>
<th>Bit</th>
<th>OFF</th>
<th>OFF</th>
<th>OFF</th>
<th>ON</th>
<th>OFF</th>
<th>OFF</th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Aufbau der Exception

Tabelle 69: Aufbau der Exception für den Funktionscode FC1

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x81</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.2 Funktionscode FC2 (Read Discrete Inputs)

Diese Funktion liest den Inhalt mehrerer Eingangsbits (digitale Eingänge).

Aufbau des Request

Die Anfrage bestimmt die Startadresse und die Anzahl der zu lesenden Bits. Beispiel: Eine Anfrage, mit welcher Bit 0 bis Bit 7 gelesen werden.

Tabelle 70: Aufbau des Request für den Funktionscode FC2

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0006</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x02</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Bit count</td>
<td>0x0008</td>
</tr>
</tbody>
</table>

Aufbau der Response

Die aktuellen Werte der abgefragten Bits werden in das Datenfeld geschrieben. Eine 1 entspricht dabei dem Zustand ON und eine 0 dem Zustand OFF. Das niederwertigste Bit des ersten Datenbytes enthält das erste Bit der Anfrage. Die anderen Bits folgen aufsteigend. Falls die Anzahl der Eingänge kein Vielfaches von 8 ist, werden die verbleibenden Bits des letzten Datenbytes mit Nullen aufgefüllt.

Tabelle 71: Aufbau der Response für den Funktionscode FC2

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x02</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Byte count</td>
<td>0x01</td>
</tr>
<tr>
<td>Byte 9</td>
<td>Bit values</td>
<td>0x12</td>
</tr>
</tbody>
</table>

Der Status der Eingänge 7 bis 0 wird als Byte-Wert 0x12 oder Binärwert 0001 0010 angezeigt. Eingang 7 ist das Bit mit dem höchsten Wert, Eingang 0 ist das Bit mit dem niedrigsten Wert dieses Bytes. Die Zuordnung erfolgt von 7 bis 0 wie folgt:

Tabelle 72: Zuordnung der Eingänge

<table>
<thead>
<tr>
<th>Bit</th>
<th>OFF</th>
<th>OFF</th>
<th>OFF</th>
<th>ON</th>
<th>OFF</th>
<th>OFF</th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Aufbau der Exception

Tabelle 73: Aufbau der Exception für den Funktionscode FC2

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x82</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.3 Funktionscode FC3 (Read Holding Registers)

Diese Funktion dient dazu, eine Anzahl von Eingangsworten (Eingangsregister) zu lesen.

Aufbau des Request

Die Anfrage bestimmt die Adresse des Startwortes (Startregister) und die Anzahl der Register, die gelesen werden. Die Adressierung beginnt mit 0. Beispiel: Abfrage der Register 0 und 1.

Tabelle 74: Aufbau des Request für den Funktionscode FC3

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0006</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x03</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Word count</td>
<td>0x0002</td>
</tr>
</tbody>
</table>

Aufbau der Response

Die Registerdaten der Antwort werden als 2 Bytes pro Register gepackt. Das erste Byte enthält dabei die höherwertigen Bits, das zweite Byte die niederwertigen.

Tabelle 75: Aufbau der Response für den Funktionscode FC3

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x03</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Byte count</td>
<td>0x04</td>
</tr>
<tr>
<td>Byte 9, 10</td>
<td>Value register 0</td>
<td>0x1234</td>
</tr>
<tr>
<td>Byte 11, 12</td>
<td>Value register 1</td>
<td>0x2345</td>
</tr>
</tbody>
</table>

Aus der Antwort ergibt sich, dass Register 0 den Wert 0x1234 und Register 1 den Wert 0x2345 enthält.

Aufbau der Exception

Tabelle 76: Aufbau der Exception für den Funktionscode FC3

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x83</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.4 Funktionscode FC4 (Read Input Registers)

Diese Funktion dient dazu, eine Anzahl von Eingangsworten (Eingangsregister) zu lesen.

Aufbau des Request

Die Anfrage bestimmt die Adresse des Startwortes (Startregister) und die Anzahl der Register, die gelesen werden sollen. Die Adressierung beginnt mit 0. Beispiel: Abfrage der Register 0 und 1.

Tabelle 77: Aufbau des Request für den Funktionscode FC4

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0006</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x04</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Word count</td>
<td>0x0002</td>
</tr>
</tbody>
</table>

Aufbau der Response

Die Registerdaten der Antwort werden als 2 Bytes pro Register gepackt. Das erste Byte enthält dabei die höherwertigen Bits, das zweite die niederwertigen.

Tabelle 78: Aufbau der Response für den Funktionscode FC4

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x04</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Byte count</td>
<td>0x04</td>
</tr>
<tr>
<td>Byte 9, 10</td>
<td>Value register 0</td>
<td>0x1234</td>
</tr>
<tr>
<td>Byte 11, 12</td>
<td>Value register 1</td>
<td>0x2345</td>
</tr>
</tbody>
</table>

Aus der Antwort ergibt sich, dass Register 0 den Wert 0x1234 und Register 1 den Wert 0x2345 enthält.

Aufbau der Exception

Tabelle 79: Aufbau der Exception für den Funktionscode FC4

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x84</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.5 Funktionscode FC5 (Write Single Coil)

Diese Funktion dient dazu, ein digitales Ausgangsbit zu schreiben.

Aufbau des Request

Die Anfrage bestimmt die Adresse des Ausgangsbits. Die Adressierung beginnt mit 0.

Tabelle 80: Aufbau des Request für den Funktionscode FC5

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0006</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x05</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0001</td>
</tr>
<tr>
<td>Byte 10</td>
<td>ON/OFF</td>
<td>0xFF</td>
</tr>
<tr>
<td>Byte 11</td>
<td></td>
<td>0x00</td>
</tr>
</tbody>
</table>

Aufbau der Response

Tabelle 81: Aufbau der Response für den Funktionscode FC5

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x05</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0001</td>
</tr>
<tr>
<td>Byte 10</td>
<td>Value</td>
<td>0xFF</td>
</tr>
<tr>
<td>Byte 11</td>
<td></td>
<td>0x00</td>
</tr>
</tbody>
</table>

Aufbau der Exception

Tabelle 82: Aufbau der Exception für den Funktionscode FC5

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x85</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01, 0x02 oder 0x03</td>
</tr>
</tbody>
</table>
11.2.3.6 Funktionscode FC6 (Write Single Register)

Diese Funktion schreibt einen Wert in ein einzelnes Ausgangswort (Ausgangsregister).

Aufbau des Request

Die Adressierung beginnt mit 0. Die Anfrage bestimmt die Adresse des Ausgangswortes, das gesetzt werden soll. Der zu setzende Wert wird im Anfragedatenfeld bestimmt.

Beispiel: Setzen des zweiten Ausgangskanal auf den Wert 0x1234.

Tabelle 83: Aufbau des Request für den Funktionscode FC6

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0006</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x06</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0001</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Register value</td>
<td>0x1234</td>
</tr>
</tbody>
</table>

Aufbau der Response

Die Antwort ist ein Echo der Anfrage.

Tabelle 84: Aufbau der Response für den Funktionscode FC6

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x06</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0001</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Register value</td>
<td>0x1234</td>
</tr>
</tbody>
</table>

Aufbau der Exception

Tabelle 85: Aufbau der Exception für den Funktionscode FC6

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x01 oder 0x02</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.7 Funktionscode FC7 (Read Exception Status)

Diese Funktion liest die ersten 8 Bit des Ausgangsprozessabbildes.

Aufbau des Request

Tabelle 86: Aufbau des Request für den Funktionscode FC7

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0002</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x07</td>
</tr>
</tbody>
</table>

Aufbau der Response

Tabelle 87: Aufbau der Response für den Funktionscode FC7

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x07</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Output Data</td>
<td>0x00</td>
</tr>
</tbody>
</table>

Aufbau der Exception

Tabelle 88: Aufbau der Exception für den Funktionscode FC7

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x85</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.8 Funktionscode FC11 (Get Comm Event Counter)

Diese Funktion gibt ein Statuswort und einen Ereigniszähler aus dem Kommunikationereigniszähler des Feldbuscontrollers zurück. Die übergeordnete Steuerung kann mit diesem Zähler feststellen, ob der Feldbuscontroller die Nachrichten fehlerlos verarbeitet hat.

Nach jeder erfolgreichen Nachrichtenverarbeitung wird der Zähler hochgezählt. Fehlermeldungen oder Zählerabfragen werden nicht mitgezählt.

Aufbau des Request

Tabelle 89: Aufbau des Request für den Funktionscode FC11

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x0002</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x0B</td>
</tr>
</tbody>
</table>

Aufbau der Response

Die Antwort enthält ein 2-Byte-Statuswort und einen 2-Byte-Ereigniszähler. Das Statuswort besteht aus Nullen.

Tabelle 90: Aufbau der Response für den Funktionscode FC11

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x0B</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Status</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Event count</td>
<td>0x0003</td>
</tr>
</tbody>
</table>

Der Ereigniszähler zeigt, dass 3 (0x0003) Ereignisse gezählt wurden.

Aufbau der Exception

Tabelle 91: Aufbau der Exception für den Funktionscode FC11

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x85</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.9 **Funktionscode FC15 (Write Multiple Coils)**

Mit dieser Funktion wird eine Anzahl von bis zu 256 Ausgangsbits auf 1 oder 0 gesetzt.

Aufbau des Request

Das erste Bit wird mit 0 adressiert. In der Anfrage werden die Bits spezifiziert, die gesetzt werden sollen. Die geforderten 1- oder 0-Zustände werden durch die Inhalte des Anfragedatenfeldes bestimmt.

In diesem Beispiel werden 16 Bits beginnend mit Adresse 0 gesetzt. Die Anfrage enthält 2 Bytes mit dem Wert 0xA5F0 also 1010 0101 1111 0000 binär.

Das erste Byte überträgt den Wert 0xA5 an die Adresse 7 bis 0, wobei Bit 0 das niederwertigste Bit ist. Das nächste Byte überträgt den Wert 0xF0 an die Adresse 15 bis 8, wobei Bit 8 das niederwertigste Bit ist.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>4, 5</td>
<td>Length field</td>
<td>0x0009</td>
</tr>
<tr>
<td>6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>7</td>
<td>MODBUS function code</td>
<td>0x0F</td>
</tr>
<tr>
<td>8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>10, 11</td>
<td>Bit count</td>
<td>0x0010</td>
</tr>
<tr>
<td>12</td>
<td>Byte count</td>
<td>0x02</td>
</tr>
<tr>
<td>13</td>
<td>Data byte1</td>
<td>0xA5</td>
</tr>
<tr>
<td>14</td>
<td>Data byte2</td>
<td>0xF0</td>
</tr>
</tbody>
</table>

Aufbau der Response

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>MODBUS function code</td>
<td>0x0F</td>
</tr>
<tr>
<td>8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>10, 11</td>
<td>Bit count</td>
<td>0x0010</td>
</tr>
</tbody>
</table>
Aufbau der Exception

Tabelle 94: Aufbau der Exception für den Funktionscode FC15

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x8F</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.10 Funktionscode FC16 (Write Multiple Registers)

Diese Funktion schreibt Werte in eine Anzahl von Ausgangsworten (Ausgangsregister).

Aufbau des Request

Das erste Register wird mit 0 adressiert.
Die Anfragenachricht bestimmt die Register, die gesetzt werden sollen.
Pro Register werden 2 Byte an Daten gesendet.
Beispiel: Die Daten in den beiden Registern 0 und 1 werden gesetzt.

Tabelle 95: Aufbau des Request für den Funktionscode FC16

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x000B</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x10</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Word count</td>
<td>0x0002</td>
</tr>
<tr>
<td>Byte 12</td>
<td>Byte count</td>
<td>0x04</td>
</tr>
<tr>
<td>Byte 13, 14</td>
<td>Register value 1</td>
<td>0x1234</td>
</tr>
<tr>
<td>Byte 15, 16</td>
<td>Register value 2</td>
<td>0x2345</td>
</tr>
</tbody>
</table>

Aufbau der Response

Tabelle 96: Aufbau der Response für den Funktionscode FC16

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x10</td>
</tr>
<tr>
<td>Byte 8, 9</td>
<td>Reference number</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Word count</td>
<td>0x0002</td>
</tr>
</tbody>
</table>

Aufbau der Exception

Tabelle 97: Aufbau der Exception für den Funktionscode FC16

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x85</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
11.2.3.11 Funktionscode FC23 (Read/Write Multiple Registers)

Diese Funktion liest Registerwerte aus und schreibt Werte in eine Anzahl von Ausgangsworten (Ausgangsregister). Der Schreibzugriff wird vor dem Lesezugriff ausgeführt.

Aufbau des Request

Das erste Register wird mit 0 adressiert. Die Anfragenachricht bestimmt die Register, die gelesen und gesetzt werden sollen. Pro Register werden 2 Byte an Daten gesendet. Beispiel: Die Daten in dem Register 3 werden auf den Wert 0x0123 gesetzt. Aus den beiden Registern 0 und 1 werden die Werte 0x0004 und 0x5678 gelesen.

Tabelle 98: Aufbau des Request für den Funktionscode FC23

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0, 1</td>
<td>Transaction identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 2, 3</td>
<td>Protocol identifier</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 4, 5</td>
<td>Length field</td>
<td>0x000F</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Unit identifier</td>
<td>0x01 nicht verwendet</td>
</tr>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x17</td>
</tr>
<tr>
<td>Byte 10, 11</td>
<td>Reference number for read</td>
<td>0x0000</td>
</tr>
<tr>
<td>Byte 12, 13</td>
<td>Reference number for write</td>
<td>0x0003</td>
</tr>
<tr>
<td>Byte 14, 15</td>
<td>Word count for write (1-100)</td>
<td>0x0001</td>
</tr>
<tr>
<td>Byte 16</td>
<td>Byte count (2 x word count for read)</td>
<td>0x02</td>
</tr>
<tr>
<td>Byte 17...(B+16)</td>
<td>Register values (B = Byte count)</td>
<td>0x0123</td>
</tr>
</tbody>
</table>

Aufbau der Response

Tabelle 99: Aufbau der Response für den Funktionscode FC23

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x17</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Byte count (2 x word count for read)</td>
<td>0x04</td>
</tr>
<tr>
<td>Byte 9...(B+1)</td>
<td>Register values (B = Byte count)</td>
<td>0x0004 oder 0x5678</td>
</tr>
</tbody>
</table>

Aufbau der Exception

Tabelle 100: Aufbau der Exception für den Funktionscode FC23

<table>
<thead>
<tr>
<th>Byte</th>
<th>Feldname</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7</td>
<td>MODBUS function code</td>
<td>0x97</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Exception code</td>
<td>0x01 oder 0x02</td>
</tr>
</tbody>
</table>
Hinweis

Ergebnisse in überlappenden Registerbereichen sind undefiniert!
Wenn sich für das Lesen und Schreiben Registerbereiche überlappen, sind die Ergebnisse undefiniert.
11.2.4 MODBUS-Register-Mapping

In den folgenden Tabellen werden die MODBUS-Adressierung und die entsprechende IEC-61131-Adressierung für das Prozessabbild, die PFC-Variablen, die NOVRAM-Daten und die internen Variablen dargestellt.

Über die Registerdienste lassen sich die Zustände von komplexen und digitalen Busklemmen ermitteln oder verändern.

Registerzugriff Lesen (mit FC3 und FC4)

Tabelle 101: Registerzugriff Lesen (mit FC3 und FC4)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0...255</td>
<td>0x0000...0x00FF</td>
<td>%IW0...%IW255</td>
</tr>
<tr>
<td>256...511</td>
<td>0x0100...0x01FF</td>
<td>%QW256...%QW511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flüchtige SPS-Ausgangsvariablen</td>
</tr>
<tr>
<td>512...767</td>
<td>0x0200...0x02FF</td>
<td>%QW0...%QW255</td>
</tr>
<tr>
<td>768...1023</td>
<td>0x0300...0x03FF</td>
<td>%IW256...%IW511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flüchtige SPS-Eingangsvariablen</td>
</tr>
<tr>
<td>1024...4095</td>
<td>0x0400...0x0FFF</td>
<td>-</td>
</tr>
<tr>
<td>4096...12287</td>
<td>0x1000...0x2FFF</td>
<td>-</td>
</tr>
<tr>
<td>12288...16383</td>
<td>0x3000...0x3FFF</td>
<td>%MW0...%MW4095</td>
</tr>
<tr>
<td>16384...65535</td>
<td>0x4000...0xFFFF</td>
<td>-</td>
</tr>
</tbody>
</table>

Registerzugriff Schreiben (mit FC6 und FC16)

Tabelle 102: Registerzugriff Schreiben (mit FC6 und FC16)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0...255</td>
<td>0x0000...0x00FF</td>
<td>%QW0...%QW255</td>
</tr>
<tr>
<td>256...511</td>
<td>0x0100...0x01FF</td>
<td>%IW256...%IW511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flüchtige SPS-Eingangsvariablen</td>
</tr>
<tr>
<td>512...767</td>
<td>0x0200...0x02FF</td>
<td>%QW0...%QW255</td>
</tr>
<tr>
<td>768...1023</td>
<td>0x0300...0x03FF</td>
<td>%IW256...%IW511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flüchtige SPS-Eingangsvariablen</td>
</tr>
<tr>
<td>1024...4095</td>
<td>0x0400...0x0FFF</td>
<td>-</td>
</tr>
<tr>
<td>4096...8191</td>
<td>0x1000...0x1FFF</td>
<td>-</td>
</tr>
<tr>
<td>8192...12287</td>
<td>0x2000...0x2FFF</td>
<td>-</td>
</tr>
<tr>
<td>12288...16383</td>
<td>0x3000...0x3FFF</td>
<td>%MW0...%MW4095</td>
</tr>
<tr>
<td>16384...65535</td>
<td>0x4000...0xFFFF</td>
<td>-</td>
</tr>
</tbody>
</table>

Die digitalen MODBUS-Dienste (Coil-Dienste) sind Bitzugriffe, mit denen sich die Zustände von digitalen Busklemmen ermitteln oder verändern lassen.
Komplexe Busklemmen sind mit diesen Diensten nicht erreichbar und werden ignoriert. Deshalb wird bei der Adressierung der digitalen Kanäle wieder mit 0 begonnen, so dass die MODBUS-Adresse immer identisch mit der Kanalnummer ist (der 47. digitale Eingang hat beispielsweise die MODBUS-Adresse „46“).

Bitzugriff Lesen (mit FC1 und FC2)

Tabelle 103: Bitzugriff Lesen (mit FC1 und FC2)

<table>
<thead>
<tr>
<th>MODBUS-Adresse [dez]</th>
<th>Speicherbereich</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...511</td>
<td>0x0000...0x01FF</td>
<td>Physical-Input-Area First 512 digital inputs</td>
</tr>
<tr>
<td>512...1023</td>
<td>0x0200...0x03FF</td>
<td>Physical-Output-Area First 512 digital outputs</td>
</tr>
<tr>
<td>1024...4095</td>
<td>0x0400...0x0FFF</td>
<td>%QX256.0...%QX511.15 PFC-OUT-Area Flüchtige SPS-Ausgangsvariablen</td>
</tr>
<tr>
<td>4096...8191</td>
<td>0x1000...0x1FFF</td>
<td>%IX256.0...%IX511.15 PFC-IN-Area Flüchtige SPS-Eingangsvariablen</td>
</tr>
<tr>
<td>8192...12287</td>
<td>0x2000...0x2FFF</td>
<td>%MX0.0...%MX3327.15 NOVRAM Retain memory</td>
</tr>
</tbody>
</table>

Bitzugriff Schreiben (mit FC5 und FC15)

Tabelle 104: Bitzugriff Schreiben (mit FC5 und FC15)

<table>
<thead>
<tr>
<th>MODBUS-Adresse [dez]</th>
<th>Speicherbereich</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...511</td>
<td>0x0000...0x01FF</td>
<td>Physical-Output-Area Max. 512 digital outputs</td>
</tr>
<tr>
<td>512...1023</td>
<td>0x0200...0x03FF</td>
<td>Physical-Output-Area Max. 512 digital outputs</td>
</tr>
<tr>
<td>1024...4095</td>
<td>0x0400...0x0FFF</td>
<td>%QX256.0...%QX511.15 PFC-OUT-Area Flüchtige SPS-Ausgangsvariablen</td>
</tr>
<tr>
<td>4096...8191</td>
<td>0x1000...0x1FFF</td>
<td>%IX256.0...%IX511.15 PFC-IN-Area Flüchtige SPS-Eingangsvariablen</td>
</tr>
<tr>
<td>8192...12287</td>
<td>0x2000...0x2FFF</td>
<td>%IX256.0...%IX511.15 PFC-IN-Area Flüchtige SPS-Eingangsvariablen</td>
</tr>
<tr>
<td>12288...65535</td>
<td>0x3000...0x3FFF</td>
<td>%MX0.0...%MX3327.15 NOVRAM Retain memory</td>
</tr>
</tbody>
</table>
11.2.5 MODBUS-Register

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Zugriff</th>
<th>Länge (Wort)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1000</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog-Zeit lesen/schreiben</td>
</tr>
<tr>
<td>0x1001</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog-Codiermaske 1...16</td>
</tr>
<tr>
<td>0x1002</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog-Codiermaske 17...32</td>
</tr>
<tr>
<td>0x1003</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog-Trigger</td>
</tr>
<tr>
<td>0x1004</td>
<td>R</td>
<td>1</td>
<td>Minimale Triggerzeit</td>
</tr>
<tr>
<td>0x1005</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog stoppen (Schreibsequenz 0xAAAA, 0x5555)</td>
</tr>
<tr>
<td>0x1006</td>
<td>R</td>
<td>1</td>
<td>Watchdog-Status</td>
</tr>
<tr>
<td>0x1007</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog neu starten (Schreibsequenz 0x1)</td>
</tr>
<tr>
<td>0x1008</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog stoppen (Schreibsequenz 0x55AA oder 0xAA55)</td>
</tr>
<tr>
<td>0x1009</td>
<td>R/W</td>
<td>1</td>
<td>MODBUS- und HTTP- schließen bei Watchdog-Time-out</td>
</tr>
<tr>
<td>0x100A</td>
<td>R/W</td>
<td>1</td>
<td>Watchdog-Konfiguration</td>
</tr>
<tr>
<td>0x1020</td>
<td>R</td>
<td>1...2</td>
<td>LED Error-Code</td>
</tr>
<tr>
<td>0x1021</td>
<td>R</td>
<td>1</td>
<td>LED Error-Argument</td>
</tr>
<tr>
<td>0x1022</td>
<td>R</td>
<td>1...4</td>
<td>Anzahl analoger Ausgangsdaten im Prozessabbild (in Bits)</td>
</tr>
<tr>
<td>0x1023</td>
<td>R</td>
<td>1...3</td>
<td>Anzahl analoger Eingangsdaten im Prozessabbild (in Bits)</td>
</tr>
<tr>
<td>0x1024</td>
<td>R</td>
<td>1...2</td>
<td>Anzahl digitaler Ausgangsdaten im Prozessabbild (in Bits)</td>
</tr>
<tr>
<td>0x1025</td>
<td>R</td>
<td>1...4</td>
<td>Anzahl digitaler Eingangsdaten im Prozessabbild (in Bits)</td>
</tr>
<tr>
<td>0x1027</td>
<td>R</td>
<td></td>
<td>Klemmenbuszyklus ausführen</td>
</tr>
<tr>
<td>0x1028</td>
<td>R/W</td>
<td>1</td>
<td>Boot-Konfiguration</td>
</tr>
<tr>
<td>0x1029</td>
<td>R</td>
<td>9</td>
<td>MODBUS/TCP-Statistik</td>
</tr>
<tr>
<td>0x1030</td>
<td>R/W</td>
<td>1</td>
<td>Konfiguration MODBUS/TCP-Time-out</td>
</tr>
<tr>
<td>0x1031</td>
<td>R</td>
<td>1</td>
<td>Lesen der MAC-ID des Kopplers/Controllers</td>
</tr>
<tr>
<td>0x1040</td>
<td>R/W</td>
<td></td>
<td>Prozessdaten-Kommunikationskanal</td>
</tr>
<tr>
<td>0x2000</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x0000</td>
</tr>
<tr>
<td>0x2001</td>
<td>R</td>
<td>1</td>
<td>Konstante 0xFFFF</td>
</tr>
<tr>
<td>0x2002</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x1234</td>
</tr>
<tr>
<td>0x2003</td>
<td>R</td>
<td>1</td>
<td>Konstante 0xAAAA</td>
</tr>
<tr>
<td>0x2004</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x5555</td>
</tr>
<tr>
<td>0x2005</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x7FFF</td>
</tr>
<tr>
<td>0x2006</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x8000</td>
</tr>
<tr>
<td>0x2007</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x3FFF</td>
</tr>
<tr>
<td>0x2008</td>
<td>R</td>
<td>1</td>
<td>Konstante 0x4000</td>
</tr>
<tr>
<td>0x2010</td>
<td>R</td>
<td>1</td>
<td>Firmware-Version</td>
</tr>
<tr>
<td>0x2011</td>
<td>R</td>
<td>1</td>
<td>Seriencode</td>
</tr>
<tr>
<td>0x2012</td>
<td>R</td>
<td>1</td>
<td>Feldbuskoppler-/controller-Code</td>
</tr>
<tr>
<td>0x2013</td>
<td>R</td>
<td>1</td>
<td>Firmware-Versionen Major-Revision</td>
</tr>
<tr>
<td>0x2014</td>
<td>R</td>
<td>1</td>
<td>Firmware-Versionen Minor-Revision</td>
</tr>
<tr>
<td>0x2020</td>
<td>R</td>
<td>1...16</td>
<td>Kurzbeschreibung Feldbuskoppler-/controller</td>
</tr>
<tr>
<td>0x2021</td>
<td>R</td>
<td>1...8</td>
<td>Kompilierzzeit der Firmware</td>
</tr>
<tr>
<td>0x2022</td>
<td>R</td>
<td>1...8</td>
<td>Kompilierdatum der Firmware</td>
</tr>
<tr>
<td>0x2023</td>
<td>R</td>
<td>1...32</td>
<td>Angabe des Firmware-Loaders</td>
</tr>
<tr>
<td>0x2030</td>
<td>R</td>
<td>1...65</td>
<td>Beschreibung der angeschlossenen Klemmen (Klemme 0...64)</td>
</tr>
<tr>
<td>0x2040</td>
<td>W</td>
<td>1</td>
<td>Software-Reset (Schreibsequenz 0x55AA oder 0xAA55)</td>
</tr>
</tbody>
</table>
11.2.5.1 Zugriff auf Registerwerte

Um lesend oder schreibend auf Registerwerte zugreifen zu können, verwenden Sie eine beliebige MODBUS-Anwendung. Neben kommerziellen Anwendungen (beispielsweise „ModScan“) stehen Ihnen auch kostenfreie Programme zur Verfügung (siehe Internetseite http://www.modbus.org/tech.php).

Die nachfolgenden Kapitel beschreiben den Zugriff auf die Register und ihre Werte.

11.2.5.2 Watchdog-Register

Der Watchdog überwacht die Datenübertragung zwischen übergeordneter Steuerung und Feldbuskoppler/-controller. Dazu wird von der übergeordneten Steuerung eine Zeitfunktion (Time-out) in dem Feldbuscontroller zyklisch angestoßen.

Bei fehlerfreier Kommunikation kann diese Zeit ihren Endwert nicht erreichen, weil sie zuvor immer wieder neu gestartet wird. Läuft die Zeit jedoch ohne Unterbrechung ab, liegt ein Feldbusausfall vor.

In diesem Fall antwortet der Feldbuskoppler/-controller auf alle folgenden MODBUS-TCP/IP-Anfragen mit dem Exception-Code 0x0004 (Slave Device Failure).

Im Feldbuskoppler/-controller sind gesonderte Register für die Ansteuerung und für die Statusabfrage des Watchdogs durch die übergeordnete Steuerung vorhanden (Registeradressen 0x1000 bis 0x1008).

Nach dem Einschalten der Versorgungsspannung ist der Watchdog noch nicht aktiviert. Zunächst ist der Time-out-Wert festzulegen (Register 0x1000). Der Watchdog kann dann zum ersten Mal aktiviert werden, indem im Masken-Register (0x1001) ein Funktionscode geschrieben wird, der ungleich 0 ist. Die Möglichkeit zur anschließenden Aktivierung nach einem Time-out besteht darin, in das Toggle-Register (0x1003) oder in das Register 0x1007 einen von 0 abweichenden Wert zu schreiben.

Durch das Lesen der minimalen Triggerzeit (Register 0x1004) wird festgestellt, ob die Watchdog-Fehlerreaktion aktiviert wurde. Falls dieser Zeitwert 0 ist, wird ein Feldbusausfall angenommen. Der Watchdog kann dann entsprechend der zuvor genannten beiden Möglichkeiten (mittels Register 0x1003 oder 0x1007) neu gestartet werden.

Wenn der Watchdog einmal gestartet wurde, kann er vom Anwender aus Sicherheitsgründen lediglich über einen bestimmten Weg gestoppt werden (Register 0x1005 oder 0x1008).

Die Watchdog-Register sind analog mit den beschriebenen MODBUS-Funktionscodes (read und write) ansprechbar. Statt der Adresse eines Klemmenkanals wird dazu die jeweilige Registeradresse angegeben.
Tabelle 106: Registeradresse 0x1000

<table>
<thead>
<tr>
<th>Registeradresse 0x1000 (4096dez)</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watchdog time, WS_TIME</td>
<td>Lesen/schreiben</td>
<td>0x0000</td>
<td>Dieses Register speichert den Wert für die Zeitüberschreitung (Time-out). Damit der Watchdog gestartet werden kann, muss der Vorgabewert auf einen Wert ungleich Null geändert werden. Die Zeit wird in Vielfachen von 100 ms gesetzt, 0x0009 bedeutet also eine Time-out-Zeit von 0.9 s. Dieser Wert kann bei laufendem Watchdog nicht geändert werden. Es gibt keinen Code, durch den der aktuelle Datenwert nochmals geschrieben werden kann, während der Watchdog aktiv ist.</td>
</tr>
</tbody>
</table>

Tabelle 107: Registeradresse 0x1001

<table>
<thead>
<tr>
<th>Registeradresse 0x1001 (4097dez)</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| | Watchdog-Funktionscode Codiermaske, Funktionscode 1…16, WDFCM_1_16 | Lesen/schreiben | 0xFFFF | Mittels dieser Maske sind die Funktionscodes einstellbar, um die Watchdog-Funktion zu triggern. Mit einer „1“ an den folgend beschriebenen Bitpositionen kann der Funktionscode ausgewählt werden:
 FC 1 Bit 0
 FC 2 Bit 1
 FC 3 Bit 2
 FC 4 Bit 3
 FC 5 Bit 4
 ...
 FC 16 Bit 15
 Der Registerwert kann nur geändert werden, wenn der Watchdog deaktiviert ist. Das im Register gespeicherte Bitmuster gibt an, welche Funktionscodes zum Auslösen des Watchdogs führen. Einige Funktionscodes werden nicht unterstützt. Für diese können zwar Werte eingetragen werden, diese starten den Watchdog jedoch nicht, auch nicht, wenn ein anderes MODBUS-Gerät diese sendet. |

Tabelle 108: Registeradresse 0x1002

<table>
<thead>
<tr>
<th>Registeradresse 0x1002 (4098dez)</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| | Watchdog-Funktionscode Codiermaske, Funktionscode 17…32, WD_FCM_17_32 | Lesen/schreiben | 0xFFFF | Gleiche Funktion wie zuvor, aber mit den Funktionscodes 17 bis 32.
 FC 17 Bit 0
 FC 18 Bit 1
 ...
 FC 32 Bit 15
 Diese Codes werden nicht unterstützt. Dieses Register sollte deshalb auf dem Vorgabewert belassen werden. Der Registerwert kann nur geändert werden, wenn der Watchdog deaktiviert ist. Es gibt keinen Ausnahmecode durch den der aktuelle Datenwert nochmals geschrieben werden kann, während der Watchdog aktiv ist. |
Tabelle 109: Registeradresse 0x1003

<table>
<thead>
<tr>
<th>Registeradresse 0x1003 (4099 dez)</th>
<th>Wert</th>
<th>Watchdog-Trigger, WD_TRIGGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugang</td>
<td>Lesen/schreiben</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0x0000</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 110: Registeradresse 0x1004

<table>
<thead>
<tr>
<th>Registeradresse 0x1004 (4100 dez)</th>
<th>Wert</th>
<th>Minimale aktuelle Trigger-Zeit, WD_AC_TRG_TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugang</td>
<td>Lesen</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0xFFFF</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 111: Registeradresse 0x1005

<table>
<thead>
<tr>
<th>Registeradresse 0x1005 (4101 dez)</th>
<th>Wert</th>
<th>Watchdog stoppen, WD_AC_STOP_MASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugang</td>
<td>Lesen/schreiben</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0x0000</td>
<td></td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Wird der Wert 0xAAAA gefolgt von dem Wert 0x5555 in dieses Register geschrieben, stoppt der Watchdog. Die Watchdog-Fehlerreaktion wird gesperrt. Ein Watchdog-Fehler wird zurückgesetzt und das Schreiben auf die Prozessdaten wird wieder ermöglicht.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 112: Registeradresse 0x1006

<table>
<thead>
<tr>
<th>Registeradresse 0x1006 (4102 dez)</th>
<th>Wert</th>
<th>Während Watchdog läuft, WD_RUNNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugang</td>
<td>Lesen</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0x0000</td>
<td></td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Aktueller Watchdog-Status bei 0x0000: Watchdog nicht aktiv bei 0x0001: Watchdog aktiv bei 0x0002: Watchdog abgelaufen</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 113: Registeradresse 0x1007

<table>
<thead>
<tr>
<th>Registeradresse 0x1007 (4103\text{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watchdog neu starten, WD_RESTART</td>
<td>Lesen/schreiben</td>
<td>0x0000</td>
<td>Schreiben von 0x1 in das Register startet den Watchdog wieder. Wurde der Watchdog vor dem Überlauf gestoppt, wird er nicht wieder gestartet.</td>
</tr>
</tbody>
</table>

Tabelle 114: Registeradresse 0x1008

<table>
<thead>
<tr>
<th>Registeradresse 0x1008 (4104\text{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watchdog einfach anhalten, WD_AC_STOP_SIMPLE</td>
<td>Lesen/schreiben</td>
<td>0x0000</td>
<td>Durch Schreiben der Werte 0xAA55 oder 0x55AA wird der Watchdog angehalten, falls er aktiv war. Die Watchdog-Fehlerreaktion wird vorübergehend deaktiviert. Ein anstehender Watchdog-Fehler wird zurückgesetzt und ein Schreiben ins Watchdog-Register ist wieder möglich.</td>
</tr>
</tbody>
</table>

Tabelle 115: Registeradresse 0x1009

<table>
<thead>
<tr>
<th>Registeradresse 0x1009 (4105\text{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MODBUS-Socket nach Watchdog-Time-out schließen</td>
<td>Lesen/schreiben</td>
<td>0x0000</td>
<td>0: MODBUS-Socket wird nicht geschlossen 1: MODBUS-Socket wird geschlossen</td>
</tr>
</tbody>
</table>

Tabelle 116: Registeradresse 0x100A

<table>
<thead>
<tr>
<th>Registeradresse 0x100A (4106\text{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| | Alternativer Watchdog | Lesen/schreiben | 0x0000 | Schreiben eines Zeitwertes in Register 0x1000
Register 0x100A = 0x0001: Watchdog wird aktiv geschaltet
Mit dem ersten MODBUS-Telegramm wird der Watchdog gestartet.
Der Watchdog wird mit jedem MODBUS/TCP-Befehl getriggert.
Nach Ablauf der Watchdog-Zeit werden alle Ausgänge auf Null gesetzt.
Die Ausgänge können durch erneutes Schreiben wieder gesetzt werden.
Das Register 0x100A ist remanent und damit auch das Register 0x1000.
Bei eingeschaltetem Watchdog lässt sich der Zeitwert in Register 0x1000 nicht mehr ändern. |

Die Länge jedes Registers beträgt 1 Wort, d. h. bei jedem Zugriff kann lediglich ein Wort geschrieben oder gelesen werden. Im Folgenden werden zwei Beispiele zum Setzen des Wertes für die Zeitüberschreitung aufgeführt:

Watchdog für eine Zeitüberschreitung von 1 Sekunde oder mehr setzen:

1. Schreiben Sie 0x000A in das Register für Zeitüberschreitung (0x1000).
 (Register 0x1000 arbeitet mit Vielfachen von 100 ms;
 1 s = 1000 ms; 1000 ms / 100 ms = 10\text{dez} = \text{A}_{\text{hex}})
2. Starten Sie mittels des Funktionscodes 5 den Watchdog, indem Sie 0x0010 ($2^{(5-1)}$) in die Codiermaske (Register 0x1001) schreiben.

Tabelle 117: Watchdog starten

<table>
<thead>
<tr>
<th>FC</th>
<th>Bit</th>
<th>bin</th>
<th>hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC16</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC15</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC14</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC13</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC12</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC11</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC10</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC9</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC8</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC7</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC6</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FC5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FC1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Der Funktionscode 5 (Schreiben eines digitalen Ausgangsbits) triggert den Watchdog kontinuierlich, um den Watchdog-Timer innerhalb der angegebenen Zeit immer wieder neu zu starten. Wird zwischen den Anfragen mehr als 1 Sekunde erreicht, ist ein Watchdog-Time-out-Fehler aufgetreten.

3. Um den Watchdog zu stoppen, schreiben Sie den Wert 0xAA55 oder 0x55AA in das Register 0x1008 (Watchdog einfach anhalten, WD_AC_STOP_SIMPLE).

Watchdog für eine Zeitüberschreitung von 10 Minuten oder mehr setzen

1. Schreiben Sie 0x1770 (= 10*60*1000 ms / 100 ms) in das Register für Zeitüberschreitung (0x1000).
 (Register 0x1000 arbeitet mit Vielfachen von 100 ms;
 10 min = 600.000 ms; 600.000 ms / 100 ms = 6000 dez = 1770 hex.)

2. Starten Sie den Watchdog, indem Sie 0x0001 in den Watchdog-Trigger-Register (0x1003) schreiben.

3. Um den Watchdog zu triggern, schreiben Sie unterschiedliche Werte, z. B. Zählwerte 0x0000, 0x0001 etc. in das Watchdog-Trigger-Register (0x1003).

4. Um den Watchdog zu stoppen, schreiben Sie den Wert 0xAA55 oder 0x55AA in das Register 0x1008 (Watchdog einfach anhalten, WD_AC_STOP_SIMPLE).
11.2.5.3 Diagnoseregister

Folgende Register können gelesen werden, um einen Fehler des Feldbusknotens zu bestimmen:

Tabelle 118: Registeradresse 0x1020

<table>
<thead>
<tr>
<th>Registeradresse 0x1020 (4128<sub>dec</sub>)</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LedErrCode</td>
<td>Lesen</td>
<td></td>
<td>Angabe des Fehlercodes</td>
</tr>
</tbody>
</table>

Tabelle 119: Registeradresse 0x1021

<table>
<thead>
<tr>
<th>Registeradresse 0x1021 (4129<sub>dec</sub>)</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LedErrArg</td>
<td>Lesen</td>
<td></td>
<td>Angabe des Fehlerargumentes</td>
</tr>
</tbody>
</table>
Konfigurationsregister

Folgende Register können gelesen werden, um die Konfiguration der angeschlossenen Busklemmen zu bestimmen:

<table>
<thead>
<tr>
<th>Tabelle 120: Registeradresse 0x1022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registeradresse 0x1022 (4130_{hex})</td>
</tr>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 121: Registeradresse 0x1023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registeradresse 0x1023 (4131_{hex})</td>
</tr>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 122: Registeradresse 0x1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registeradresse 0x1024 (4132_{hex})</td>
</tr>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 123: Registeradresse 0x1025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registeradresse 0x1025 (4133_{hex})</td>
</tr>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 124: Registeradresse 0x1027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registeradresse 0x1027 (4135_{hex})</td>
</tr>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 125: Registeradresse 0x1028</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registeradresse 0x1028 (4136_{hex})</td>
</tr>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>
Tabelle 126: Registeradresse 0x1029

<table>
<thead>
<tr>
<th>Registeradresse 0x1029 (4137_{dez}) mit bis zu 18 Worten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Durch Schreiben von 0xAA55 oder 0x55AA wird das Register zurückgesetzt.

Tabelle 127: Registeradresse 0x1030

<table>
<thead>
<tr>
<th>Registeradresse 0x1030 (4144_{dez}) mit bis zu 1 Wort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Standard</td>
</tr>
</tbody>
</table>

Tabelle 128: Registeradresse 0x1031

<table>
<thead>
<tr>
<th>Registeradresse 0x1031 (4145_{dez}) mit bis zu 3 Worte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

Tabelle 129: Registeradresse 0x1040

<table>
<thead>
<tr>
<th>Registeradresse 0x1040 (4160_{hex})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>
Tabelle 130: Registeradresse 0x2030

<table>
<thead>
<tr>
<th>Registeradresse 0x2030 (8240_{dez}) mit bis zu 65 Worten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>

Über Register 0x2030 kann die Konfiguration des Knotens ermittelt werden. Dabei wird die Bestellnummer der Busklemmen bzw. des Feldbuskopplers/-controllers (ohne führende 750) der Reihe nach aufgelistet. Jede Bezeichnung wird in einem Wort dargestellt. Da Bestellnummern von digitalen Busklemmen nicht ausgelesen werden können, wird eine digitale Busklemme codiert dargestellt.

Die einzelnen Bits haben dann die folgende Bedeutung:
- Bitposition 0 → Eingangsklemme
- Bitposition 1 → Ausgangsklemme
- Bitposition 2...7 → nicht benutzt
- Bitposition 8...14 → Busklemmengröße in Bit
- Bitposition 15 → Kennung digitale Busklemme

Beispiele:

4-Kanal-Digitaleingangsklemme = 0x8401

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hex</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

2-Kanal-Digitalausgangsklemme = 0x8202

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hex</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 131: Registeradresse 0x2040

<table>
<thead>
<tr>
<th>Registeradresse 0x2040 (8256_{dez})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Zugang</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>
11.2.5.5 Firmware-Informationsregister

Folgende Register werden genutzt, um Informationen zur Firmware des Feldbuskoppplers/-controllers auszulesen:

Tabelle 132: Registeradresse 0x2010

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision, INFO_REVISION</td>
<td>Firmware-Index, z. B. 0x0005 für Version 5</td>
</tr>
</tbody>
</table>

Tabelle 133: Registeradresse 0x2011

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series code, INFO_SERIES</td>
<td>WAGO-Baureihennummer, z. B. 0x02EE (750 dez.) für WAGO-I/O-SYSTEM 750</td>
</tr>
</tbody>
</table>

Tabelle 134: Registeradresse 0x2012

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item number, INFO_ITEM</td>
<td>WAGO-Bestellnummer, z. B. 0x0349 (841 dez.) für den Controller 750-841, 0x0155 (341 dec.) für den Feldbuskoppler 750-341 etc.</td>
</tr>
</tbody>
</table>

Tabelle 135: Registeradresse 0x2013

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major sub item code, INFO_MAJOR</td>
<td>Firmware-Version Major-Revision</td>
</tr>
</tbody>
</table>

Tabelle 136: Registeradresse 0x2014

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor sub item code, INFO_MINOR</td>
<td>Firmware-Version Minor-Revision</td>
</tr>
</tbody>
</table>

Tabelle 137: Registeradresse 0x2020

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description, INFO_DESCRIPTION</td>
<td>Informationen zum Feldbuskoppler/-controller, 16 Worte</td>
</tr>
</tbody>
</table>
Tabelle 138: Registeradresse 0x2021

| Registeradresse 0x2021 (8225dez) mit bis zu 8 Worten |
|-----------------|---------------------------------|
| Wert | Description, INFO_DESCRIPTION |
| Zugang | Lesen |
| Beschreibung | Zeit des Firmwarestandes, 8 Worte |

Tabelle 139: Registeradresse 0x2022

| Registeradresse 0x2022 (8226dez) mit bis zu 8 Worten |
|-----------------|---------------------------------|
| Wert | Description, INFO_DATE |
| Zugang | Lesen |
| Beschreibung | Datum des Firmwarestandes, 8 Worte |

Tabelle 140: Registeradresse 0x2023

| Registeradresse 0x2023 (8227dez) mit bis zu 32 Worten |
|-----------------|---------------------------------|
| Wert | Description, INFO_LOADER_INFO |
| Zugang | Lesen |
| Beschreibung | Info über Programmierung der Firmware, 32 Worte |
11.2.5.6 Konstantenregister

Folgende Register enthalten Konstanten, die genutzt werden können, um die Kommunikation mit dem Master zu testen:

Tabelle 141: Registeradresse 0x2000

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2000</td>
<td>Null, GP ZERO</td>
<td>Lesen</td>
<td>Konstante mit Null</td>
</tr>
</tbody>
</table>

Tabelle 142: Registeradresse 0x2001

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2001</td>
<td>Einsen, GP ONES</td>
<td>Lesen</td>
<td>Konstante mit Einsen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ”-1”, wenn Konstante als „signed int“ deklariert ist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• „MAXVALUE“, wenn Konstante als „unsigned int“ deklariert ist</td>
</tr>
</tbody>
</table>

Tabelle 143: Registeradresse 0x2002

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2002</td>
<td>1,2,3,4, GP_1234</td>
<td>Lesen</td>
<td>Konstanter Wert, zum Testen, ob High- und Low-Byte getauscht sind</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Intel/Motorola Format). Sollte im Master als 0x1234 erscheinen. Erscheint 0x3412, müssen High- und Low-Byte getauscht werden.</td>
</tr>
</tbody>
</table>

Tabelle 144: Registeradresse 0x2003

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2003</td>
<td>Maske 1, GP_AAAA</td>
<td>Lesen</td>
<td>Konstante, die angezeigt, ob alle Bits vorhanden sind.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wird zusammen mit Register 0x2004 genutzt.</td>
</tr>
</tbody>
</table>

Tabelle 145: Registeradresse 0x2004

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2004</td>
<td>Maske 1, GP_5555</td>
<td>Lesen</td>
<td>Konstante, die angezeigt, ob alle Bits vorhanden sind.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wird zusammen mit Register 0x2003 genutzt.</td>
</tr>
</tbody>
</table>

Tabelle 146: Registeradresse 0x2005

<table>
<thead>
<tr>
<th>Registeradresse</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2005</td>
<td>Größte positive Zahl, GP_MAX_POS</td>
<td>Lesen</td>
<td>Konstante, um die Arithmetik zu kontrollieren</td>
</tr>
</tbody>
</table>
Tabelle 147: Registeradresse 0x2006

<table>
<thead>
<tr>
<th>Registeradresse 0x2006 (8198_{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Größte negative Zahl, GP_MAX_NEG</td>
<td>Lesen</td>
<td>Konstante, um die Arithmetik zu kontrollieren</td>
</tr>
</tbody>
</table>

Tabelle 148: Registeradresse 0x2007

<table>
<thead>
<tr>
<th>Registeradresse 0x2007 (8199_{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Größte halbe positive Zahl, GP_HALF_POS</td>
<td>Lesen</td>
<td>Konstante, um die Arithmetik zu kontrollieren</td>
</tr>
</tbody>
</table>

Tabelle 149: Registeradresse 0x2008

<table>
<thead>
<tr>
<th>Registeradresse 0x2008 (8200_{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Größte halbe negative Zahl, GP_HALF_NEG</td>
<td>Lesen</td>
<td>Konstante, um die Arithmetik zu kontrollieren</td>
</tr>
</tbody>
</table>

Tabelle 150: Registeradresse 0x3000 bis 0x3FFF

<table>
<thead>
<tr>
<th>Registeradresse 0x3000 bis 0x3FFF (12288_{dez} bis 16383_{dez})</th>
<th>Wert</th>
<th>Zugang</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retain-Bereich</td>
<td>Lesen/schreiben</td>
<td>In diesen Registern kann auf den Merker/Retain-Bereich zugegriffen werden.</td>
</tr>
</tbody>
</table>
12 Busklemmen

12.1 Übersicht

Für den Aufbau von Applikationen mit dem WAGO-I/O-SYSTEM 750/753 sind verschiedene Arten von Busklemmen verfügbar:

- Digitaleingangsklemmen
- Digitalausgangsklemmen
- Analogeingangsklemmen
- Analogausgangsklemmen
- Sonderklemmen
- Systemklemmen

Eine detaillierte Beschreibung zu jeder Busklemme und deren Varianten entnehmen Sie den Handbüchern zu den Busklemmen.

Information

Weitere Information zum WAGO-I/O-SYSTEM
12.2 Aufbau der Prozessdaten für MODBUS/TCP

Der Aufbau der Prozessdaten ist bei einigen Busklemmen bzw. deren Varianten feldbusspezifisch.

Bei MODBUS/TCP wird das Prozessabbild wortweise aufgebaut (mit word-alignment). Die interne Darstellung der Daten, die größer als ein Byte sind, erfolgt nach dem Intel-Format.

Im Folgenden wird für alle Busklemmen des WAGO-I/O-SYSTEMs 750 und 753 die feldbusspezifische Darstellung im Prozessabbild für MODBUS/TCP beschrieben und der Aufbau der Prozesswerte gezeigt.

ACHTUNG

Geräteschäden durch falsche Adressierung!
Zur Vermeidung von Geräteschäden im Feldbereich, müssen Sie bei der Adressierung einer an beliebiger Position im Feldbusknoten befindlichen Busklemme, die Prozessdaten aller vorherigen byte- bzw. bitweise-orientierten Busklemmen berücksichtigen.

Für das PFC-Prozessabbild des Feldbuscontrollers ist der Aufbau der Prozesswerte identisch.
12.2.1 Digitaleingangsklemmen

Die Digitaleingangsklemmen liefern als Prozesswerte pro Kanal je ein Bit, das den Signalzustand des jeweiligen Kanals angibt. Diese Bits werden in das Eingangsprozessabbild gemappt.

Einzelne digitale Busklemmen stellen sich mit einem zusätzlichen Diagnosebit pro Kanal im Eingangsprozessabbild dar. Das Diagnosebit dient zur Auswertung eines auftretenden Fehlers, wie z. B. Drahtbruch und/oder Kurzschluss.

Sofern in dem Knoten auch Analogeingangsklemmen gesteckt sind, werden die digitalen Daten immer, byteweise zusammengefasst, hinter die analogen Eingangsdaten in dem Eingangsprozessabbild angehängt.

12.2.1.1 1-Kanal-Digitaleingangsklemmen mit Diagnose

750-435

Tabelle 151: 1-Kanal-Digitaleingangsklemmen mit Diagnose

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosebit</td>
<td>Datenbit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 1</td>
<td>DI 1</td>
</tr>
</tbody>
</table>

12.2.1.2 2-Kanal-Digitaleingangsklemmen

Tabelle 152: 2-Kanal-Digitaleingangsklemmen

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Datenbit</td>
<td>Datenbit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DI 2</td>
<td>DI 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>

12.2.1.3 2-Kanal-Digitaleingangsklemmen mit Diagnose

750-419, -421, -424, -425
753-421, -424, -425

Tabelle 153: 2-Kanal-Digitaleingangsklemmen mit Diagnose

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Datenbit</td>
<td>Datenbit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosebit</td>
<td>Diagnosebit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 2</td>
<td>S 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Datenbit</td>
<td>Datenbit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DI 2</td>
<td>DI 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>
12.2.1.4 2-Kanal-Digitaleingangsklemmen mit Diagnose und Ausgangsdaten

750-418
753-418

Die Digitaleingangsklemme liefert über die Prozesswerte im Eingangsprozessabbild hinaus 4 Bit Daten, die im Ausgangsprozessabbild dargestellt werden.

Tabelle 154: 2-Kanal-Digitaleingangsklemmen mit Diagnose und Ausgangsdaten

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diag.</td>
<td>Diag.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 2</td>
<td>Bit 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daten</td>
<td>Daten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal</td>
<td>Kanal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quitt.</td>
<td>Quitt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit Q 1</td>
<td>bit Q 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 1</td>
<td>Kanal 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

12.2.1.5 4-Kanal-Digitaleingangsklemmen

750-402, -403, -408, -414, -415, -422, -423, -428, -432, -433, -1420, -1421, -1422, -1423
753-402, -403, -408, -415, -422, -423, -432, -433, -440

Tabelle 155: 4-Kanal-Digitaleingangsklemmen

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daten</td>
<td>Daten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 4</td>
<td>Bit 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daten</td>
<td>Daten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal</td>
<td>Kanal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

12.2.1.6 8-Kanal-Digitaleingangsklemmen

750-430, -431, -436, -437, -1415, -1416, -1417, -1418
753-430, -431, -434

Tabelle 156: 8-Kanal-Digitaleingangsklemmen

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daten</td>
<td>Daten</td>
<td>Daten</td>
<td>Daten</td>
<td>Daten</td>
<td>Daten</td>
<td>Daten</td>
<td>Daten</td>
</tr>
<tr>
<td></td>
<td>Bit 8</td>
<td>Bit 7</td>
<td>Bit 6</td>
<td>Bit 5</td>
<td>Bit 4</td>
<td>Bit 3</td>
<td>Bit 2</td>
<td>Bit 1</td>
</tr>
<tr>
<td></td>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
</tr>
</tbody>
</table>
12.2.1.7 8-Kanal-Digitaleingangsklemme PTC mit Diagnose und Ausgangsdaten

750-1425

Die Digitaleingangsklemme PTC liefert über einen logischen Kanal 2 Byte für das Ein- und Ausgangsprozessabbild.

Der Signalzustand der PTC-Eingänge DI1 … DI8 wird über das Eingangsdatenbyte D0 an den Feldbuskoppler/-controller übertragen. Die Fehlerzustände werden über das Ausgangsdatenbyte D1 übertragen.

Über das Ausgangsdatenbyte D1 werden die Kanäle 1 … 8 ein- oder ausgeschaltet. Das Ausgangsdatenbyte D0 ist reserviert und hat immer den Wert „0“.

Tabelle 157: 8-Kanal-Digitaleingangsklemme PTC mit Diagnose und Ausgangsdaten

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Eingangsbyte D0</th>
<th>Eingangsbyte D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>Bit 6</td>
<td>Bit 5</td>
</tr>
<tr>
<td>Signal-</td>
<td>Signal-</td>
<td>Signal-</td>
</tr>
<tr>
<td>stand</td>
<td>stand</td>
<td>stand</td>
</tr>
<tr>
<td>DI 8</td>
<td>DI 7</td>
<td>DI 6</td>
</tr>
<tr>
<td>Kanal</td>
<td>Kanal</td>
<td>Kanal</td>
</tr>
</tbody>
</table>

Tabelle 158: 16-Kanal-Digitaleingangsklemmen

12.2.1.8 16-Kanal-Digitaleingangsklemmen

750-1400, -1402, -1405, -1406, -1407

Tabelle 158: 16-Kanal-Digitaleingangsklemmen
12.2.2 Digitalausgangsklemmen

Die Digitalausgangsklemmen liefern als Prozesswerte pro Kanal je ein Bit, das den Status des jeweiligen Kanals angibt. Diese Bits werden in das Ausgangsprozessabbild gemappt.

Sofern in dem Knoten auch Analogausgangsklemmen gesteckt sind, werden die digitalen Daten immer, byteweise zusammengefasst, hinter die analogen Ausgangsdaten in dem Ausgangsprozessabbild angehängt.

12.2.2.1 1-Kanal-Digitausgangsklemmen mit Eingangsdaten

750-523

Die Digitalausgangsklemmen liefern über das eine Prozesswert-Bit im Ausgangsprozessabbild hinaus 1 Bit, das im Eingangsprozessabbild dargestellt wird. Dieses Statusbit zeigt den „Handbetrieb“ an.

Tabelle 159: 1-Kanal-Digitausgangsklemmen mit Eingangsdaten

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht genutzt</td>
<td>Statusbit “Handbetrieb“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht genutzt</td>
<td>steuert DO 1 Kanal 1</td>
</tr>
</tbody>
</table>

12.2.2.2 2-Kanal-Digitausgangsklemmen

750-501, -502, -509, -512, -513, -514, -517, -535, (und alle Varianten),
753-501, -502, -509, -512, -513, -514, -517

Tabelle 160: 2-Kanal-Digitausgangsklemmen

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>steuert DO 2 Kanal 2</td>
<td>steuert DO 1 Kanal 1</td>
</tr>
</tbody>
</table>
12.2.2.3 2-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten

750-507 (-508), -522, 753-507

Die Digitalausgangsklemmen liefern über die 2-Bit-Prozesswerte im Ausgangsprozessabbild hinaus 2 Bit Daten, die im Eingangsprozessabbild dargestellt werden. Dieses sind kanalweise zugeordnete Diagnosebits, die eine Überlast, einen Kurzschluss oder einen Drahtbruch anzeigen.

Tabelle 161: 2-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Diagnosebit</th>
<th>Diagnosebit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 2</td>
<td>S 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>steuert</th>
<th>steuert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DO 2</td>
<td>DO 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>

750-506, 753-506

Die Digitalausgangsklemmen liefern über die 4-Bit-Prozesswerte im Ausgangsprozessabbild hinaus 4 Bit Daten, die im Eingangsprozessabbild dargestellt werden. Dieses sind kanalweise zugeordnete Diagnosebits, die durch einen 2-Bit-Fehlercode eine Überlast, einen Kurzschluss oder einen Drahtbruch anzeigen.

Tabelle 162: 2-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten 75x-506

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Diagnosebit</th>
<th>Diagnosebit</th>
<th>Diagnosebit</th>
<th>Diagnosebit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 3</td>
<td>S 2</td>
<td>S 1</td>
<td>S 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 2</td>
<td>Kanal 1</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>

Diagnosebits S1/S0, S3/S2: = ‘00’ normaler Betrieb
Diagnosebits S1/S0, S3/S2: = ‘01’ keine Last angeschlossen/Kurzschluss gegen +24 V
Diagnosebits S1/S0, S3/S2: = ‘10’ Kurzschluss gegen GND/Überlast

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>nicht genutzt</th>
<th>nicht genutzt</th>
<th>steuert</th>
<th>steuert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DO 2</td>
<td>DO 1</td>
<td>DO 2</td>
<td>DO 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanal 2</td>
<td>Kanal 1</td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>
12.2.2.4 4-Kanal-Digitalausgangsklemmen

750-504, -516, -519, -531,
753-504, -516, -531, -540

Tabelle 163: 4-Kanal-Digitalausgangsklemmen

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>steuert DO 4 Kanal 4</td>
<td>steuert DO 3 Kanal 3</td>
<td>steuert DO 2 Kanal 2</td>
<td>steuert DO 1 Kanal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.2.2.5 4-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten

750-532

Die Digitalausgangsklemmen liefern über die 4-Bit-Prozesswerte im Ausgangsprozessabbild hinaus 4 Bit Daten, die im Eingangsprozessabbild dargestellt werden. Dieses sind kanalweise zugeordnete Diagnosebits, die eine Überlast, einen Kurzschluss oder einen Drahtbruch anzeigen.

Tabelle 164: 4-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosebit S = ‘0’</td>
<td>kein Fehler</td>
<td>Diagnosebit S = ‘1’</td>
<td>Drahtbruch, Kurzschluss oder Überlast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosebit S = ‘0’</td>
<td>keine Fehler</td>
<td>Diagnosebit S = ‘1’</td>
<td>Drahtbruch, Kurzschluss oder Überlast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>steuert DO 4 Kanal 4</td>
<td>steuert DO 3 Kanal 3</td>
<td>steuert DO 2 Kanal 2</td>
<td>steuert DO 1 Kanal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.2.2.6 8-Kanal-Digitalausgangsklemmen

750-530, -536, -1515, -1516
753-530, -534

Tabelle 165: 8-Kanal-Digitalausgangsklemmen

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>steuert DO 8 Kanal 8</td>
<td>steuert DO 7 Kanal 7</td>
<td>steuert DO 6 Kanal 6</td>
<td>steuert DO 5 Kanal 5</td>
<td>steuert DO 4 Kanal 4</td>
<td>steuert DO 3 Kanal 3</td>
<td>steuert DO 2 Kanal 2</td>
<td>steuert DO 1 Kanal 1</td>
<td></td>
</tr>
</tbody>
</table>
12.2.2.7 8-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten

750-537

Die Digitalausgangsklemmen liefern über die 8-Bit-Prozesswerte im Ausgangsprozessabbild hinaus 8 Bit Daten, die im Eingangsprozessabbild dargestellt werden. Dieses sind kanalweise zugeordnete Diagnosebits, die eine Überlast, einen Kurzschluss oder einen Drahtbruch anzeigen.

Tabelle 166: 8-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosebit S 8</td>
<td>Diagnosebit S 7</td>
<td>Diagnosebit S 6</td>
<td>Diagnosebit S 5</td>
<td>Diagnosebit S 4</td>
<td>Diagnosebit S 3</td>
<td>Diagnosebit S 2</td>
<td>Diagnosebit S 1</td>
</tr>
<tr>
<td>Kanal 8</td>
<td>Kanal 7</td>
<td>Kanal 6</td>
<td>Kanal 5</td>
<td>Kanal 4</td>
<td>Kanal 3</td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>

Diagnosebit S = ‘0’ kein Fehler
Diagnosebit S = ‘1’ Drahtbruch, Kurzschluss oder Überlast

12.2.2.8 16-Kanal-Digitalausgangsklemmen

750-1500, -1501, -1504, -1505

Tabelle 167: 16-Kanal-Digitalausgangsklemmen

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 15</td>
</tr>
<tr>
<td>steuert DO 16</td>
</tr>
</tbody>
</table>
12.2.2.9 8-Kanal-Digitaleingangsklemmen/-Digitalausgangsklemmen

750-1502, -1506

Tabelle 168: 8-Kanal-Digitalein-/Digitalausgangsklemmen

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbit</td>
<td>Datenbit</td>
<td>Datenbit</td>
<td>Datenbit</td>
<td>Datenbit</td>
<td>Datenbit</td>
<td>Datenbit</td>
<td>Datenbit</td>
</tr>
<tr>
<td>DI 8</td>
<td>DI 7</td>
<td>DI 6</td>
<td>DI 5</td>
<td>DI 4</td>
<td>DI 3</td>
<td>DI 2</td>
<td>DI 1</td>
</tr>
<tr>
<td>Kanal 8</td>
<td>Kanal 7</td>
<td>Kanal 6</td>
<td>Kanal 5</td>
<td>Kanal 4</td>
<td>Kanal 3</td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>steuert</td>
<td>steuert</td>
<td>steuert</td>
<td>steuert</td>
<td>steuert</td>
<td>steuert</td>
<td>steuert</td>
<td>steuert</td>
</tr>
<tr>
<td>DO 8</td>
<td>DO 7</td>
<td>DO 6</td>
<td>DO 5</td>
<td>DO 4</td>
<td>DO 3</td>
<td>DO 2</td>
<td>DO 1</td>
</tr>
<tr>
<td>Kanal 8</td>
<td>Kanal 7</td>
<td>Kanal 6</td>
<td>Kanal 5</td>
<td>Kanal 4</td>
<td>Kanal 3</td>
<td>Kanal 2</td>
<td>Kanal 1</td>
</tr>
</tbody>
</table>
12.2.3 Analogeingangsklemmen

Die Analogeingangsklemmen liefern je Kanal 16-Bit-Messwerte und 8 Steuer-/Statusbits.

MODBUS/TCP verwendet die 8 Steuer-/Statusbits jedoch nicht, d. h. es erfolgt kein Zugriff und keine Auswertung.

In das Eingangsprozessabbild für den Feldbus werden bei dem Feldbuskoppler/-controller mit MODBUS/TCP deshalb nur die 16-Bit-Messwerte pro Kanal im Intel-Format und wortweise gemappt.

Sofern in dem Knoten auch Digitaleingangsklemmen gesteckt sind, werden die analogen Eingangsdaten immer vor die digitalen Daten in das Eingangsprozessabbild abgebildet.

Informationen zum Steuer-/Statusbyteaufbau

12.2.3.1 1-Kanal-Analogeingangsklemmen

750-491, (und alle Varianten)

Tabelle 169: 1-Kanal-Analogeingangsklemmen

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D1D0</td>
<td>Messwert U_D</td>
</tr>
<tr>
<td>1</td>
<td>D3D2</td>
<td>Messwert U_ref</td>
</tr>
</tbody>
</table>

12.2.3.2 2-Kanal-Analogeingangsklemmen

Tabelle 170: 2-Kanal-Analogeingangsklemmen

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D1D0</td>
<td>Messwert Kanal 1</td>
</tr>
<tr>
<td>1</td>
<td>D3D2</td>
<td>Messwert Kanal 2</td>
</tr>
</tbody>
</table>
12.2.3.3 4-Kanal-Analogeingangsklemmen

750-450, -453, -455, -457, -459, -460, -468, (und alle Varianten),
753-453, -455, -457, -459

Tabelle 171: 4-Kanal-Analogeingangsklemmen

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>1</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>2</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>3</td>
<td>D7</td>
<td>D6</td>
</tr>
</tbody>
</table>
12.2.3.4 3-Phasen-Leistungsmessklemme

750-493

Tabelle 172: 3-Phasen-Leistungsmessklemme

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>- S0</td>
<td>Statusbyte 0</td>
</tr>
<tr>
<td>1</td>
<td>D1 D0</td>
<td>Eingangsdatenwort 1</td>
</tr>
<tr>
<td>2</td>
<td>- S1</td>
<td>Statusbyte 1</td>
</tr>
<tr>
<td>3</td>
<td>D3 D2</td>
<td>Eingangsdatenwort 2</td>
</tr>
<tr>
<td>4</td>
<td>- S2</td>
<td>Statusbyte 2</td>
</tr>
<tr>
<td>5</td>
<td>D5 D4</td>
<td>Eingangsdatenwort 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>- C0</td>
<td>Steuerbyte 0</td>
</tr>
<tr>
<td>1</td>
<td>D1 D0</td>
<td>Ausgangsdatenwort 1</td>
</tr>
<tr>
<td>2</td>
<td>- C1</td>
<td>Steuerbyte 1</td>
</tr>
<tr>
<td>3</td>
<td>D3 D2</td>
<td>Ausgangsdatenwort 2</td>
</tr>
<tr>
<td>4</td>
<td>- C2</td>
<td>Steuerbyte 2</td>
</tr>
<tr>
<td>5</td>
<td>D5 D4</td>
<td>Ausgangsdatenwort 3</td>
</tr>
</tbody>
</table>

12.2.3.5 8-Kanal-Analogeingangsklemmen

750-451

Tabelle 173: 8-Kanal-Analogeingangsklemmen

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D1 D0</td>
<td>Messwert Kanal 1</td>
</tr>
<tr>
<td>1</td>
<td>D3 D2</td>
<td>Messwert Kanal 2</td>
</tr>
<tr>
<td>2</td>
<td>D5 D4</td>
<td>Messwert Kanal 3</td>
</tr>
<tr>
<td>3</td>
<td>D7 D6</td>
<td>Messwert Kanal 4</td>
</tr>
<tr>
<td>4</td>
<td>D9 D8</td>
<td>Messwert Kanal 5</td>
</tr>
<tr>
<td>5</td>
<td>D11 D10</td>
<td>Messwert Kanal 6</td>
</tr>
<tr>
<td>6</td>
<td>D13 D12</td>
<td>Messwert Kanal 7</td>
</tr>
<tr>
<td>7</td>
<td>D15 D14</td>
<td>Messwert Kanal 8</td>
</tr>
</tbody>
</table>
12.2.4 Analogausgangsklemmen

Die Analogausgangsklemmen liefern je Kanal 16-Bit-Ausgabewerte und 8 Steuer-/Statusbits. MODBUS/TCP verwendet die 8 Steuer-/Statusbits jedoch nicht, d. h. es erfolgt kein Zugriff und keine Auswertung.

In das Ausgangsprozessabbild für den Feldbus werden bei dem Feldbuskoppler/-controller mit MODBUS/TCP deshalb nur die 16-Bit-Ausgabewerte pro Kanal im Intel-Format und wortweise gemappt.

Sofern in dem Knoten auch Digitalausgangsklemmen gesteckt sind, werden die analogen Ausgangsdaten immer vor die digitalen Daten in das Ausgangsprozessabbild abgebildet.

Information

Informationen zum Steuer-/Statusbyteaufbau

12.2.4.1 2-Kanal-Analogausgangsklemmen

750-550, -552, -554, -556, -560, -562, 563, -585, (und alle Varianten), 753-550, -552, -554, -556

Tabelle 174: 2-Kanal-Analogausgangsklemmen

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>D3</td>
<td>D2</td>
</tr>
</tbody>
</table>

12.2.4.2 4-Kanal-Analogausgangsklemmen

750-553, -555, -557, -559, 753-553, -555, -557, -559

Tabelle 175: 4-Kanal-Analogausgangsklemmen

<table>
<thead>
<tr>
<th>Ausgangsprozessabbild</th>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>D7</td>
<td>D6</td>
</tr>
</tbody>
</table>
12.2.5 Sonderklemmen

Bei einzelnen Klemmen wird neben den Datenbytes auch das Control-/Statusbyte eingeblendet. Dieses dient dem bidirektionalen Datenaustausch der Busklemme mit der übergeordneten Steuerung.

Das Controlbyte wird von der Steuerung an die Klemme und das Statusbyte von der Klemme an die Steuerung übertragen. Somit ist beispielsweise das Setzen eines Zählers mit dem Steuerbyte oder die Anzeige von Bereichsunter- oder -überschreitung durch das Statusbyte möglich.

Das Control-/Statusbyte liegt im Prozessabbild stets im Low-Byte.

Information

Informationen zum Steuer-/Statusbyteaufbau

Hinweis

WAGO-I/O-CHECK Control-Mode nur für Prozessabbild ≤ 256 Byte möglich!
Beachten Sie, dass der Betrieb des Inbetriebnahmetools WAGO-I/O-CHECK im Control-Mode nur bis zu einer Prozessabbildgröße von maximal 256 Byte möglich ist. Der Control-Mode dient zur Einstellung der Mailbox- und Prozessabbildgrößen einiger Sonderklemmen (z. B. Bluetooth® RF-Transceiver 750-644, AS-Interface-Masterklemme 750-655 etc.).

12.2.5.1 Zählerklemmen

750-404, (und alle Varianten außer /000-005), 753-404, (und Variante /000-003)

Tabelle 176: Zählerklemmen 750-404, (und alle Varianten außer /000-005), 753-404, (und Variante /000-003)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Statusbyte</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Zählerwert</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td></td>
</tr>
</tbody>
</table>

Handbuch
Version 1.2.0

Tabelle 177: Zählerklemmen 750-404/000-005

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Byte</td>
<td>Low Byte</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td>D2</td>
</tr>
</tbody>
</table>

750-638, 753-638

Tabelle 178: Zählerklemmen 750-638, 753-638

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Byte</td>
<td>Low Byte</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>S0</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>S1</td>
</tr>
<tr>
<td>3</td>
<td>D3</td>
<td>D2</td>
</tr>
</tbody>
</table>
12.2.5.2 Pulsweitenklemmen

750-511, (und alle Varianten /xxx-xxx)

Diese Pulsweitenklemmen belegen insgesamt 6 Bytes Nutzdaten im Ein- und Ausgangsbereich des Prozessab bilds, 4 Datenbytes sowie zwei zusätzliche Steuer-/Statusbytes. Dabei werden mit word-alignment jeweils 4 Worte im Prozessabbild belegt.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Steuerbyte von Zähler 1</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Zählersetzwert von Zähler 1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Steuerbyte von Zähler 2</td>
</tr>
<tr>
<td>3</td>
<td>D3</td>
<td>Zählersetzwert von Zähler 2</td>
</tr>
</tbody>
</table>

12.2.5.3 Serielle Schnittstellen mit alternativem Datenformat

750-650, (und die Varianten /000-002, -004, -006, -009, -010, -011, -012, -013), 750-651, (und die Varianten /000-001, -002, -003), 750-653, (und die Varianten /000-002, -007), 753-650, -653

Hinweis

Das Prozessabbild der /003-000-Varianten ist abhängig von der parametrierten Betriebsart!

Bei den frei parametrierbaren Busklemmenvarianten /003-000 kann die gewünschte Betriebsart eingestellt werden. Der Aufbau des Prozessab bilds dieser Busklemme hängt dann davon ab, welche Betriebsart eingestellt ist.

Die seriellen Schnittstellenklemmen, die auf das alternative Datenformat eingestellt sind, belegen insgesamt 4 Bytes Nutzdaten im Ein- und Ausgangsbereich des Prozessab bilds, 3 Datenbytes und ein zusätzliches Steuer-/Statusbyte. Dabei werden mit word-alignment jeweils 2 Worte im Prozessabbild belegt.
12.2.5.4 Serielle Schnittstellen mit Standard-Datenformat

750-650/000-001, -014, -015, -016
750-653/000-001, -006

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D0</td>
<td>Datenbyte</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>Steuer-/Statusbyte</td>
</tr>
<tr>
<td>2</td>
<td>D4</td>
<td>Datenbytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D0</td>
<td>Datenbyte</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>Steuer-/Statusbyte</td>
</tr>
<tr>
<td>2</td>
<td>D4</td>
<td>Datenbytes</td>
</tr>
</tbody>
</table>

12.2.5.5 Datenaustauschklemmen

750-654, (und die Variante /000-001)

Die Datenaustauschklemmen belegen jeweils insgesamt 4 Datenbytes im Ein- und Ausgangsbereich des Prozessabbilds. Dabei werden mit word-alignment jeweils 2 Worte im Prozessabbild belegt.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D1</td>
<td>Datenbytes</td>
</tr>
<tr>
<td>1</td>
<td>D3</td>
<td>Datenbytes</td>
</tr>
</tbody>
</table>
12.2.5.6 SSI-Geber-Interface-Busklemmen

750-630, (und alle Varianten)

Hinweis

Das Prozessabbild der /003-000-Varianten ist abhängig von der parametrierten Betriebsart!

Bei den frei parametrierbaren Busklemmenvarianten /003-000 kann die gewünschte Betriebsart eingestellt werden. Der Aufbau des Prozessab bilds dieser Busklemme hängt dann davon ab, welche Betriebsart eingestellt ist.

Tabelle 183: SSI-Geber Interface Busklemmen mit alternativem Datenformat

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>1</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td></td>
<td>Datenbytes</td>
<td></td>
</tr>
</tbody>
</table>

12.2.5.7 Weg- und Winkelmessung

750-631/000-004, -010, -011

Tabelle 184: Weg- und Winkelmessung 750-631/000-004, -010, -011

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>S, nicht genutzt</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0, Zählerwort</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-, nicht genutzt</td>
</tr>
<tr>
<td>3</td>
<td>D4</td>
<td>D3, Latchwort</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Steuerbyte von Zähler 1</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Zähler setzwert von Zähler 1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>nicht genutzt</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>nicht genutzt</td>
</tr>
</tbody>
</table>
750-634

Tabelle 185: Incremental-Encoder-Interface 750-634

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Byte</td>
<td>Low Byte</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>(D2) *)</td>
</tr>
<tr>
<td>3</td>
<td>D4</td>
<td>D3</td>
</tr>
</tbody>
</table>

*) Ist durch das Steuerbyte die Betriebsart Periodendauermessung eingestellt, wird in D2 zusammen mit D3/D4 die Periodendauer als 24-Bit-Wert ausgegeben.

750-637

Tabelle 186: Incremental-Encoder-Interface 750-637

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Byte</td>
<td>Low Byte</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>C0/S0</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>C1/S1</td>
</tr>
<tr>
<td>3</td>
<td>D3</td>
<td>D2</td>
</tr>
</tbody>
</table>
Die Digitale Impuls Schnittstelle belegt insgesamt 4 Datenbytes im Ein- und Ausgangsbereich des Prozessabilds, 3 Datenbytes und ein zusätzliches Steuer-/Statusbyte. Dabei werden mit word-alignment jeweils 2 Worte im Prozessabbild belegt.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D0</td>
<td>Datenbyte</td>
</tr>
<tr>
<td></td>
<td>C0/S0</td>
<td>Steuer-/Statusbyte</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>Datenbytes</td>
</tr>
</tbody>
</table>

Tabelle 187: Digitale Impuls Schnittstelle 750-635

12.2.5.8 DC-Drive Controller

750-636

Der DC-Drive-Controller 750-636 stellt dem Koppler über 1 logischen Kanal 6 Byte Ein- und Ausgangsprozessabbild zur Verfügung. Die zu sendenden und zu empfangenden Positionsdaten werden in 4 Ausgangsbytes (D0 ... D3) und 4 Eingangsbytes (D0 ... D3) abgelegt. 2 Steuerbytes (C0, C1) und 2 Statusbytes (S0, S1) dienen zur Steuerung der Busklemme und des Antriebs. Alternativ zu den Positionsdaten im Eingangsprozessabbild (D0 ... D3) können erweiterte Statusinformationen (S2 ... S5) eingeblendet werden. Die 3 Steuer- und Statusbytes für die Applikation (C1 ... C3, S1 ... S3) dienen zur Kontrolle des Datenflusses.

Die Umschaltung zwischen den Prozessdaten und den erweiterten Statusbytes im Eingangsprozessabbild erfolgt über Bit 3 (ExtendedInfo_ON) im Controlbyte C1 (C1.3). Mit Bit 3 des Statusbytes S1 (S1.3) wird die Umschaltung quittiert.

Tabelle 188: Antriebssteuerung 750-636

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S1</td>
<td>Status S1</td>
</tr>
<tr>
<td></td>
<td>S0</td>
<td>Statusbyte S0</td>
</tr>
<tr>
<td>1</td>
<td>D1*) / S3**)</td>
<td>Istposition*) / Erweitertes Statusbyte S3**)</td>
</tr>
<tr>
<td></td>
<td>D0*) / S2**)</td>
<td>Istposition (LSB)* / Erweitertes Statusbyte S2**)</td>
</tr>
<tr>
<td>2</td>
<td>D3*) / S5**)</td>
<td>Istposition (MSB)* / Erweitertes Statusbyte S3**)</td>
</tr>
<tr>
<td></td>
<td>D2*) / S4**)</td>
<td>Istposition*) / Erweitertes Statusbyte S4**)</td>
</tr>
</tbody>
</table>

*) ExtendedInfo_ON = ‘0’.
**) ExtendedInfo_ON = ‘1’.
Ausgangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C1 High Byte</td>
<td>Steuerbyte C1</td>
</tr>
<tr>
<td></td>
<td>C0 Low Byte</td>
<td>Steuerbyte C0</td>
</tr>
<tr>
<td>1</td>
<td>D1 High Byte</td>
<td>Sollposition</td>
</tr>
<tr>
<td></td>
<td>D0 Low Byte</td>
<td>Sollposition (LSB)</td>
</tr>
<tr>
<td>2</td>
<td>D3 High Byte</td>
<td>Sollposition (MSB)</td>
</tr>
<tr>
<td></td>
<td>D2 Low Byte</td>
<td>Sollposition</td>
</tr>
</tbody>
</table>

12.2.5.9 Steppercontroller

750-670

Der Steppercontroller RS 422 / 24 V / 20 mA 750-670 stellt dem Feldbuskoppler über 1 logischen Kanal 12 Byte Ein- und Ausgangsprozessabbild zur Verfügung. Die zu sendenden und zu empfangenden Daten werden in Abhängigkeit von der Betriebsart in bis zu 7 Ausgangsbytes (D0 ... D6) und 7 Eingangsbytes (D0 ... D6) abgelegt. Das Ausgangsbyte D0 und das Eingangsbyte D0 sind reserviert und ohne Funktion. Ein Klemmenbus-Steuer- und Statusbyte (C0, S0) sowie 3 Steuer- und Statusbytes für die Applikation (C1 ... C3, S1 ... S3) dienen zur Kontrolle des Datenflusses.

Die Umschaltung zwischen beiden Prozessabbildern erfolgt über das Bit 5 im Controlbyte C0 (C0.5). Mit dem Bit 5 des Statusbytes S0 (S0.5) wird das Einschalten der Mailbox quittiert.

Tabelle 189: Steppercontroller RS 422 / 24 V / 20 mA 750-670

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserviert</td>
<td>Statusbyte S0</td>
</tr>
<tr>
<td>1</td>
<td>D1 High Byte</td>
<td>Prozessdaten*) / Mailbox**)</td>
</tr>
<tr>
<td></td>
<td>D0 Low Byte</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D3 High Byte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2 Low Byte</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D5 High Byte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4 Low Byte</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S3 High Byte</td>
<td>Statusbyte S3</td>
</tr>
<tr>
<td></td>
<td>D6 Low Byte</td>
<td>Prozessdaten*) / Reserviert**)</td>
</tr>
<tr>
<td>5</td>
<td>S1 High Byte</td>
<td>Statusbyte S1</td>
</tr>
<tr>
<td></td>
<td>S2 Low Byte</td>
<td>Statusbyte S2</td>
</tr>
</tbody>
</table>

*) Zyklisches Prozessabbild (Mailbox ausgeschaltet).
**) Mailboxprozessabbild (Mailbox eingeschaltet)
Ausgangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserviert</td>
<td>C0</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>4</td>
<td>C3</td>
<td>D6</td>
</tr>
<tr>
<td>5</td>
<td>C1</td>
<td>C2</td>
</tr>
</tbody>
</table>

Reserviert: Prozessdaten*) / Mailbox**)
Controlbyte C0: Prozessdaten*) / Mailbox**)
Controlbyte C1: Prozessdaten*) / Mailbox**)
Controlbyte C2: Prozessdaten*) / Mailbox**)

*) Zyklisches Prozessabbild (Mailbox ausgeschaltet).
**) Mailboxprozessabbild (Mailbox eingeschaltet)

12.2.5.10 RTC-Modul

750-640

Tabelle 190: RTC-Modul 750-640

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID</td>
<td>C/S</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td>D2</td>
</tr>
</tbody>
</table>

ID: Steuer-/Statusbyte
ID: Datenbytes

12.2.5.11 DALI/DSI-Masterklemme

750-641

Tabelle 191: DALI/DSI-Masterklemme 750-641

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D0</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>D1</td>
</tr>
<tr>
<td>2</td>
<td>D4</td>
<td>D3</td>
</tr>
</tbody>
</table>

D0: DALI-Antwort
D0: Statusbyte
D2: Message 3
D2: DALI-Adresse
D4: Message 1
D4: Message 2
Ausgangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D0 High Byte</td>
<td>C Low Byte</td>
</tr>
<tr>
<td>1</td>
<td>D2 High Byte</td>
<td>D1 Low Byte</td>
</tr>
<tr>
<td>2</td>
<td>D4 High Byte</td>
<td>D3 Low Byte</td>
</tr>
</tbody>
</table>

12.2.5.12 DALI-Multi-Master-Klemme

753-647

Der Aufbau der Prozessdaten ist im Einzelnen in den anschließenden Tabellen dargestellt.
Eingangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>res.</td>
</tr>
<tr>
<td>1</td>
<td>DA4…DA7</td>
<td>Bitpaar für DALI-Adresse DA0:</td>
</tr>
<tr>
<td>2</td>
<td>DA12…DA15</td>
<td>Bit 1: Bit gesetzt = EIN</td>
</tr>
<tr>
<td>3</td>
<td>DA20…DA23</td>
<td>Bit 2: Bit gesetzt = AUS</td>
</tr>
<tr>
<td>4</td>
<td>DA28…DA31</td>
<td>Bit 1,3-7: Bit 0: 1-/2-Tasten-Modus, Bit 2: Broadcast-Status EIN/AUS</td>
</tr>
<tr>
<td>5</td>
<td>DA36…DA39</td>
<td>Bit 2: Bit gesetzt = Fehler</td>
</tr>
<tr>
<td>6</td>
<td>DA44…DA47</td>
<td>Bit 1 nicht gesetzt = kein Fehler</td>
</tr>
<tr>
<td>7</td>
<td>DA52…DA55</td>
<td>Bitpaare DA1 bis DA63 analog zu DA0.</td>
</tr>
<tr>
<td>8</td>
<td>DA60…DA63</td>
<td>Bitpaar für DALI-Adresse DA0:</td>
</tr>
<tr>
<td>9</td>
<td>GA4…GA7</td>
<td>Bit 1: Bit gesetzt = EIN</td>
</tr>
<tr>
<td>10</td>
<td>GA12…GA15</td>
<td>Bit 2: Bit gesetzt = Fehler</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>nicht verwendet</td>
</tr>
</tbody>
</table>

DA = DALI-Adresse
GA = Gruppenadresse

Ausgangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>res.</td>
</tr>
<tr>
<td>1</td>
<td>DA4…DA7</td>
<td>Bitpaar für DALI-Adresse DA0:</td>
</tr>
<tr>
<td>2</td>
<td>DA12…DA15</td>
<td>Bit 1: kurz: DA schalten EIN</td>
</tr>
<tr>
<td>3</td>
<td>DA20…DA23</td>
<td>lang: dimmen, heller</td>
</tr>
<tr>
<td>4</td>
<td>DA28…DA31</td>
<td>Bit 2: kurz: DA schalten AUS</td>
</tr>
<tr>
<td>5</td>
<td>DA36…DA39</td>
<td>lang: dimmen, dunkler</td>
</tr>
<tr>
<td>6</td>
<td>DA44…DA47</td>
<td>Bitpaare DA1 bis DA63 analog zu DA0.</td>
</tr>
<tr>
<td>7</td>
<td>DA52…DA55</td>
<td>Bitpaar für DALI-Adresse DA0:</td>
</tr>
<tr>
<td>8</td>
<td>DA60…DA63</td>
<td>Bit 1: kurz: GA schalten EIN</td>
</tr>
<tr>
<td>9</td>
<td>GA4…GA7</td>
<td>lang: dimmen heller</td>
</tr>
<tr>
<td>10</td>
<td>GA12…GA15</td>
<td>Bit 2: kurz: GA schalten AUS</td>
</tr>
<tr>
<td>11</td>
<td>Bit 8…15</td>
<td>Szene 0…15 schalten</td>
</tr>
</tbody>
</table>

DA = DALI-Adresse
GA = Gruppenadresse
12.2.5.13 LON®-FTT-Klemme

753-648

12.2.5.14 Funkreceiver EnOcean

750-642

Tabelle 194: Funkreceiver EnOcean 750-642

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Byte</td>
<td>Low Byte</td>
</tr>
<tr>
<td>0</td>
<td>D0</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>D1</td>
</tr>
</tbody>
</table>

12.2.5.15 MP-Bus-Masterklemme

750-643

12.2.5.16 Bluetooth® RF-Transceiver

750-644

Die Größe des Prozessabbildes der *Bluetooth®*-Busklemme ist in den festgelegten Größen 12, 24 oder 48 Byte einstellbar.

Es besteht aus einem Steuerbyte (Eingang) bzw. Statusbyte (Ausgang), einem Leerbyte, einem 6, 12 oder 18 Byte großen, überlagerbaren Mailbox (Modus 2) und den *Bluetooth®*-Prozessdaten in einem Umfang von 4 bis 46 Byte.

Die *Bluetooth®*-Busklemme belegt also jeweils 12 bis maximal 48 Bytes im Prozessabbild, wobei die Größen des Eingangs- und Ausgangsprozessabbildes stets übereinstimmen.

Die Einstellung der Mailbox- und Prozessabbildgrößen erfolgt mit dem Inbetriebnahmetool WAGO-I/O-CHECK.

Tabelle 196: Bluetooth® RF-Transceiver 750-644

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Byte</td>
<td>Low Byte</td>
</tr>
<tr>
<td>0</td>
<td>C1/S1</td>
<td>C0/S0</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>max. 23</td>
<td>D45</td>
<td>D44</td>
</tr>
</tbody>
</table>
12.2.5.17 Schwingstärke/Wälzlagerüberwachung VIB I/O

750-645

Die Schwingstärke/Wälzlagerüberwachung VIB I/O belegt insgesamt 12 Bytes Nutzdaten im Ein- und Ausgangsbereich des Prozessab bilds, 8 Datenbytes und vier zusätzliche Steuer-/Statusbytes. Dabei werden mit word-alignment jeweils 8 Worte im Prozessabbild belegt.

Tabelle 197: Schwingstärke/Wälzlagerüberwachung VIB I/O 750-645

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>C0/S0 nicht genutzt</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>C1/S1 nicht genutzt</td>
</tr>
<tr>
<td>3</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>C2/S2 nicht genutzt</td>
</tr>
<tr>
<td>5</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>C3/S3 nicht genutzt</td>
</tr>
<tr>
<td>7</td>
<td>D7</td>
<td>D6</td>
</tr>
</tbody>
</table>

12.2.5.18 KNX/EIB/TP1-Klemme

753-646

Tabelle 198: KNX/EIB/TP1-Klemme 753-646

Eingangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S0</td>
<td>nicht genutzt</td>
<td>Statusbyte</td>
</tr>
<tr>
<td>1</td>
<td>S1 OP</td>
<td>Erweitertes Statusbyte</td>
<td>Opcode</td>
</tr>
<tr>
<td>2</td>
<td>D1 D0</td>
<td>Datenbyte 1</td>
<td>Datenbyte 0</td>
</tr>
<tr>
<td>3</td>
<td>D3 D2</td>
<td>Datenbyte 3</td>
<td>Datenbyte 2</td>
</tr>
<tr>
<td>4</td>
<td>D5 D4</td>
<td>Datenbyte 5</td>
<td>Datenbyte 4</td>
</tr>
<tr>
<td>5</td>
<td>D7 D6</td>
<td>Datenbyte 7</td>
<td>Datenbyte 6</td>
</tr>
<tr>
<td>6</td>
<td>D9 D8</td>
<td>Datenbyte 9</td>
<td>Datenbyte 8</td>
</tr>
<tr>
<td>7</td>
<td>D11 D10</td>
<td>Datenbyte 11</td>
<td>Datenbyte 10</td>
</tr>
<tr>
<td>8</td>
<td>D13 D12</td>
<td>Datenbyte 13</td>
<td>Datenbyte 12</td>
</tr>
<tr>
<td>9</td>
<td>D15 D14</td>
<td>Datenbyte 15</td>
<td>Datenbyte 14</td>
</tr>
<tr>
<td>10</td>
<td>D17 D16</td>
<td>Datenbyte 17</td>
<td>Datenbyte 16</td>
</tr>
<tr>
<td>11</td>
<td>D19 D18</td>
<td>Datenbyte 19</td>
<td>Datenbyte 18</td>
</tr>
</tbody>
</table>

Ausgangsprozessabbild

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C0</td>
<td>nicht genutzt</td>
<td>Steuerbyte</td>
</tr>
<tr>
<td>1</td>
<td>C1 OP</td>
<td>Erweitertes Steuerbyte</td>
<td>Opcode</td>
</tr>
<tr>
<td>2</td>
<td>D1 D0</td>
<td>Datenbyte 1</td>
<td>Datenbyte 0</td>
</tr>
<tr>
<td>3</td>
<td>D3 D2</td>
<td>Datenbyte 3</td>
<td>Datenbyte 2</td>
</tr>
<tr>
<td>4</td>
<td>D5 D4</td>
<td>Datenbyte 5</td>
<td>Datenbyte 4</td>
</tr>
<tr>
<td>5</td>
<td>D7 D6</td>
<td>Datenbyte 7</td>
<td>Datenbyte 6</td>
</tr>
<tr>
<td>6</td>
<td>D9 D8</td>
<td>Datenbyte 9</td>
<td>Datenbyte 8</td>
</tr>
<tr>
<td>7</td>
<td>D11 D10</td>
<td>Datenbyte 11</td>
<td>Datenbyte 10</td>
</tr>
<tr>
<td>8</td>
<td>D13 D12</td>
<td>Datenbyte 13</td>
<td>Datenbyte 12</td>
</tr>
<tr>
<td>9</td>
<td>D15 D14</td>
<td>Datenbyte 15</td>
<td>Datenbyte 14</td>
</tr>
<tr>
<td>10</td>
<td>D17 D16</td>
<td>Datenbyte 17</td>
<td>Datenbyte 16</td>
</tr>
<tr>
<td>11</td>
<td>D19 D18</td>
<td>Datenbyte 19</td>
<td>Datenbyte 18</td>
</tr>
</tbody>
</table>
12.2.5.19 AS-Interface-Masterklemme

Das Prozessabbild der AS-Interface-Masterklemme ist in seiner Länge einstellbar in den festgelegten Größen von 12, 20, 24, 32, 40 oder 48 Byte. Es besteht aus einem Control- bzw. Statusbyte, einer 0, 6, 10, 12 oder 18 Byte großen Mailbox und den AS-interface Prozessdaten in einem Umfang von 0 bis 32 Byte.

Mit word-alignment belegt die AS-Interface-Masterklemme also jeweils 6 bis maximal 24 Worte im Prozessabbild.

Die Einstellung der Mailbox- und Prozessabbildgrößen erfolgt mit dem Inbetriebnahmetool WAGO-I/O-CHECK.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bezeichnung der Bytes</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>C0/S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nicht genutzt</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>max.</td>
<td>23</td>
<td>D45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D44</td>
</tr>
</tbody>
</table>

Mailbox (0, 3, 5, 6 oder 9 Worte) sowie Prozessdaten (0-16 Worte)

Tabelle 199: AS-Interface-Masterklemme 750-655
12.2.6 Systemklemmen

12.2.6.1 Systemklemmen mit Diagnose

750-610, -611

Die Potentialeinspeiseklemmen 750-610 und -611 mit Diagnose liefern zur Überwachung der Versorgung 2 Bits Diagnosedaten.

Tabelle 200: Systemklemmen mit Diagnose 750-610, -611

<table>
<thead>
<tr>
<th>Eingangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosebit</td>
<td>S 2</td>
<td>S 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spannung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.2.6.2 Binäre Platzhalterklemmen

750-622

Die binären Platzhalterklemmen 750-622 verhalten sich wahlweise wie 2-Kanal-Digitaleingangs- oder -ausgangsklemmen und belegen je nach angewählter Einstellung pro Kanal 1, 2, 3 oder 4 Bits. Dabei werden dann entsprechend 2, 4, 6 oder 8 Bits entweder im Prozesseingangs- oder -ausgangsabbild belegt.

Tabelle 201: Binäre Platzhalterklemmen 750-622 (mit dem Verhalten einer 2 DI)

<table>
<thead>
<tr>
<th>Ein- oder Ausgangsgangsprozessabbild</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Datenbit DI 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Datenbit DI 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13 Einsatz in explosionsgefährdeten Bereichen

Das WAGO-I/O-SYSTEM 750 (elektrische Betriebsmittel) ist für den Einsatz in explosionsgefährdeten Bereichen der Zone 2 ausgelegt.

Die nachfolgenden Kapitel beinhalten die allgemeine Kennzeichnung der Komponenten sowie die zu berücksichtigenden Errichtungsbestimmungen. Die einzelnen Abschnitte im Kapitel „Errichtungsbestimmungen“ müssen berücksichtigt werden, falls die Busklemme die entsprechende Zulassung besitzt oder dem Anwendungsbereich der ATEX-Richtlinie unterliegt.
13.1 Beispielhafter Aufbau der Kennzeichnung

13.1.1 Kennzeichnung für Europa gemäß ATEX und IEC-Ex

Abbildung 63: Beispiel für die seitliche Bedruckung der ATEX- und IECEx-zugelassenen Busklemmen.

Abbildung 64: Textdetail - Beispielbedruckung der ATEX- und IECEx-zugelassenen Busklemmen.
Tabelle 202: Beschreibung der Beispielbedruckung der ATEX- und IECEx-zugelassenen Busklemmen.

<table>
<thead>
<tr>
<th>Bedruckungstext</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TÜV 07 ATEX 554086 X</td>
<td>Zulassungsbehörde bzw. Bescheinigungsnummern</td>
</tr>
<tr>
<td>IECEx TUN 09.0001 X</td>
<td></td>
</tr>
</tbody>
</table>

Stäube

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Gerätegruppe: alle außer Bergbau</td>
</tr>
<tr>
<td>3D</td>
<td>Gerätekategorie 3 (Zone 22)</td>
</tr>
<tr>
<td>Ex</td>
<td>Explosionsschutzkennzeichen</td>
</tr>
<tr>
<td>tc Dc</td>
<td>Zündschutzart und Geräteschutzniveau (EPL):</td>
</tr>
<tr>
<td></td>
<td>Schutz durch Gehäuse</td>
</tr>
<tr>
<td>IIIc</td>
<td>Staubgruppe: explosionsfähige Staubatmosphäre</td>
</tr>
<tr>
<td>T 135°C</td>
<td>Max. Oberflächentemperatur des Gehäuses (ohne</td>
</tr>
<tr>
<td></td>
<td>Staubablage)</td>
</tr>
</tbody>
</table>

Bergbau

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Gerätegruppe: Bergbau</td>
</tr>
<tr>
<td>M2</td>
<td>Gerätekategorie: hohes Maß an Sicherheit</td>
</tr>
<tr>
<td>Ex</td>
<td>Explosionsschutzkennzeichen</td>
</tr>
<tr>
<td>d Mb</td>
<td>Zündschutzart und Geräteschutzniveau (EPL):</td>
</tr>
<tr>
<td></td>
<td>druckfeste Kapselung</td>
</tr>
<tr>
<td>I</td>
<td>Elektrische Geräte im schlagwettergefährdeten</td>
</tr>
<tr>
<td></td>
<td>Grubenbau</td>
</tr>
</tbody>
</table>

Gase

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Gerätegruppe: Alle außer Bergbau</td>
</tr>
<tr>
<td>3G</td>
<td>Gerätekategorie 3 (Zone 2)</td>
</tr>
<tr>
<td>Ex</td>
<td>Explosionsschutzkennzeichen</td>
</tr>
<tr>
<td>nA Gc</td>
<td>Zündschutzart und Geräteschutzniveau (EPL):</td>
</tr>
<tr>
<td></td>
<td>nicht funkendes Betriebsmittel</td>
</tr>
<tr>
<td>nC Gc</td>
<td>Zündschutzart und Geräteschutzniveau (EPL):</td>
</tr>
<tr>
<td></td>
<td>funkendes Betriebsmittel, in denen die Kontakte</td>
</tr>
<tr>
<td></td>
<td>in geeigneter Weise geschützt sind</td>
</tr>
<tr>
<td>IIC</td>
<td>Gasgruppe: explosionsfähige Gasatmosphäre</td>
</tr>
<tr>
<td>T4</td>
<td>Temperaturklasse: Max. Oberflächentemperatur</td>
</tr>
<tr>
<td></td>
<td>135°C</td>
</tr>
</tbody>
</table>
Abbildung 65: Beispiel für die seitliche Bedruckung der ATEX- und IECEx-zugelassenen Ex i Busklemmen.

TUEV 12 ATEX X6432 X
II 3 (G D Ex) fe In Bg 1 NC T195°C De
II M2 IM2 Ex e 1 (u. M) 1 Mb
II 3 (G Ex nA o Ga) NC T4 Gc
IECEx TUN 12.0039 X
Ex 1c 1a Ga1 Ex T195°C De
Ex d 1 (u. M) 1 Mb
Ex nA 1 (a Ga) NC T4 Gc

Abbildung 66: Textdetail - Beispielbedruckung der ATEX- und IECEx-zugelassenen Ex i Busklemmen.
Tabelle 203: Beschreibung der Beispielbedruckung der ATEX- und IECEx-zugelassenen Ex i Busklemmen.

<table>
<thead>
<tr>
<th>Bedruckungstext</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TÜV 07 ATEX 554086 X</td>
<td>Zulassungsbehörde bzw. Bescheinigungsnummern</td>
</tr>
<tr>
<td>IECEx TUN 09.0001 X</td>
<td></td>
</tr>
<tr>
<td>TÜV 12 ATEX 106032 X</td>
<td></td>
</tr>
<tr>
<td>IECEx TUN 12.0039 X</td>
<td></td>
</tr>
</tbody>
</table>

Stäube

II	Gerätegruppe: alle außer Bergbau
3(1)D	Gerätekategorie 3 (Zone 22) die Sicherheitsvorrichtungen für Geräte der Kategorie 1 (Zone 20) enthalten
3(2)D	Gerätekategorie 3 (Zone 22) die Sicherheitsvorrichtungen für Geräte der Kategorie 2 (Zone 21) enthalten
Ex	Explosionsschutzkennzeichen
tc Dc	Zündschutzart und Geräteschutzniveau (EPL): Schutz durch Gehäuse
[ia Da]	Zündschutzart und Geräteschutzniveau (EPL): zugehöriges Betriebsmittel mit eigensicheren Stromkreisen für Zone 20
[ib Db]	Zündschutzart und Geräteschutzniveau (EPL): zugehöriges Betriebsmittel mit eigensicheren Stromkreisen für Zone 21
IIIC	Staubgruppe: explosionsfähige Staubatmosphäre
T 135°C	Max. Oberflächentemperatur des Gehäuses (ohne Staubablage)

Bergbau

I	Gerätegruppe: Bergbau
M2 (M1)	Gerätekategorie: hohes Maß an Sicherheit, mit Stromkreisen, die ein sehr hohes Maß an Sicherheit darbieten
Ex d Mb	Explosionsschutzkennzeichen mit Zündschutzart und Geräteschutzniveau (EPL): druckfeste Kapselung
[ia Ma]	Zündschutzart und Geräteschutzniveau (EPL): zugehöriges Betriebsmittel mit eigensicheren Stromkreisen
I	Elektrische Geräte im schlagwettergefährdeten Grubenbau
Tabelle 203: Beschreibung der Beispielbedruckung der ATEX- und IECEx-zugelassenen Ex i Busklemmen.

<table>
<thead>
<tr>
<th>Gase</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Gerätegruppe: Alle außer Bergbau</td>
</tr>
<tr>
<td>3(1)G</td>
<td>Gerätekategorie 3 (Zone 2) die Sicherheitsvorrichtungen für Geräte der Kategorie 1 (Zone 0) enthalten</td>
</tr>
<tr>
<td>3(2)G</td>
<td>Gerätekategorie 3 (Zone 2) die Sicherheitsvorrichtungen für Geräte der Kategorie 2 (Zone 1) enthalten</td>
</tr>
<tr>
<td>Ex</td>
<td>Explosionsschutzkennzeichen</td>
</tr>
<tr>
<td>nA Gc</td>
<td>Zündschutzart und Geräteschutzniveau (EPL): nicht funkendes Betriebsmittel</td>
</tr>
<tr>
<td>[ia Ga]</td>
<td>Zündschutzart und Geräteschutzniveau (EPL): zugehöriges Betriebsmittel mit eigensicheren Stromkreisen für Zone 0</td>
</tr>
<tr>
<td>[ib Gb]</td>
<td>Zündschutzart und Geräteschutzniveau (EPL): zugehöriges Betriebsmittel mit eigensicheren Stromkreisen für Zone 1</td>
</tr>
<tr>
<td>IIC</td>
<td>Gasgruppe: explosionsfähige Gasatmosphäre</td>
</tr>
<tr>
<td>T4</td>
<td>Temperaturklasse: Max. Oberflächentemperatur 135°C</td>
</tr>
</tbody>
</table>
13.1.2 Kennzeichnung für Amerika gemäß NEC 500

Abbildung 67: Beispiel für seitliche Bedruckung der Busklemmen gemäß NEC 500

Abbildung 68: Textdetail - Beispielbedruckung der Busklemmen gemäß NEC 500

Tabelle 204: Beschreibung der Beispielbedruckung der Busklemmen gemäß NEC 500

<table>
<thead>
<tr>
<th>Bedruckungstext</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL I</td>
<td>Explosionsschutzgruppe (Gefahrenkategorie)</td>
</tr>
<tr>
<td>DIV 2</td>
<td>Einsatzbereich</td>
</tr>
<tr>
<td>Grp. ABCD</td>
<td>Explosionsgruppe (Gasgruppe)</td>
</tr>
<tr>
<td>Op temp code T4</td>
<td>Temperaturklasse</td>
</tr>
</tbody>
</table>
13.2 Errichtungsbestimmungen

Für die Errichtung und den Betrieb elektrischer Anlagen in explosionsfähigen Bereichen sind die am Einsatzort geltenden nationalen und internationalen Bestimmungen und Verordnungen zu beachten.
13.2.1 Besondere Bedingungen für den sicheren Ex Betrieb (ATEX Zertifikat TÜV 07 ATEX 554086 X)

1. Für den Betrieb als Gc- oder Dc-Gerät (in Zone 2 oder 22) ist das WAGO-I/O-SYSTEM 750-*** in einem Gehäuse zu errichten, das die Anforderungen an ein Gerät nach den zutreffenden Normen (siehe Kennzeichnung) EN 60079-0, EN 60079-11, EN 60079-15 und EN 60079-31 erfüllt.

 Für den Betrieb als Gerät der Gruppe I, Kategorie M2, ist das Gerät in einem Gehäuse zu errichten, das einen ausreichenden Schutz gemäß EN 60079-0 und EN 60079-1 gewährleistet mit der Schutzart IP64. Die Übereinstimmung mit diesen Anforderungen und dem korrekten Einbau des Gerätes in ein Gehäuse oder Schaltschrank muss durch einen ExNB bescheinigt sein.

2. Außerhalb des Gerätes sind geeignete Maßnahmen zu treffen, sodass die Bemessungsspannung durch vorübergehende Störungen um nicht mehr als 40% überschritten wird.

3. DIP-Schalter, Kodierschalter und Potentiometer, die an die Busklemme angeschlossen sind, dürfen nur betätigt werden, wenn eine explosionsfähige Atmosphäre ausgeschlossen werden kann.

4. Das Anschließen und Abklemmen von nicht eigensicheren Stromkreisen ist nur zulässig für die Installation, die Wartung und die Reparatur. Das zeitliche Zusammentreffen von explosiver Atmosphäre und der Installation, der Wartung und der Reparatur muss ausgeschlossen werden.

5. Für die Typen 750-606, 750-625/000-001, 750-487/003-000, 750-484 und 750-633 muss folgendes berücksichtigt werden: Die Schnittstellenstromkreise müssen begrenzt werden auf die Überspannungskategorie I/II/III (Stromkreise ohne Netzversorgung/Stromkreise mit Netzversorgung) wie in der EN 60664-1 definiert.

7. In der Nähe des Gerätes sind die folgenden Warnhinweise anzubringen:
 WARNHINWEIS – SICHERUNG NICHT UNTER SPANNUNG HERAUSNEHMEN ODER WECHSELN
 WARNHINWEIS – NICHT UNTER SPANNUNG TRENNEN
 WARNHINWEIS – NUR IN EINEM NICHT EXPLOSIONSGEFÄHRDETEN BEREICH TRENNEN
13.2.2 Besondere Bedingungen für den sicheren Ex Betrieb (ATEX Zertifikat TÜV 12 ATEX 106032 X)

1. Für den Betrieb als Gc- oder Dc-Gerät (in Zone 2 oder 22) ist das WAGO-I/O-SYSTEM 750-*** Ex i in einem Gehäuse zu errichten, das die Anforderungen an ein Gerät nach den zutreffenden Normen (siehe Kennzeichnung) EN 60079-0, EN 60079-11, EN 60079-15 und EN 60079-31 erfüllt.
 Für den Betrieb als Gerät der Gruppe I, Kategorie M2, ist das Gerät in einem Gehäuse zu errichten, das einen ausreichenden Schutz gemäß EN 60079-0 und EN 60079-1 gewährleistet mit der Schutzart IP64.
 Die Übereinstimmung mit diesen Anforderungen und dem korrekten Einbau des Gerätes in ein Gehäuse oder Schaltschrank muss durch einen ExNB bescheinigt sein.

2. Außerhalb des Gerätes sind geeignete Maßnahmen zu treffen, so dass die Bemessungsspannung durch vorübergehende Störungen um nicht mehr als 40% überschritten wird.

3. Das Anschließen und Abklemmen von nicht eigensicheren Stromkreisen ist nur zulässig für die Installation, die Wartung und die Reparatur. Das zeitliche Zusammentreffen von explosiver Atmosphäre und der Installation, der Wartung und der Reparatur muss ausgeschlossen werden.

4. Für das Gerät muss folgendes berücksichtigt werden: Die Schnittstellenstromkreise müssen begrenzt werden auf die Überspannungskategorie I/II/III (Stromkreise ohne Netzversorgung/ Stromkreise mit Netzversorgung) wie in der EN 60664-1 definiert.
13.2.3 Besondere Bedingungen für den sicheren Ex Betrieb (IEC-Ex Zertifikat IECEx TUN 09.0001 X)

2. Außerhalb des Gerätes sind Maßnahmen zu treffen, sodass die Bemessungsspannung durch vorübergehende Störungen um nicht mehr als 40% überschritten wird.

3. DIP-Schalter, Kodierschalter und Potentiometer, die an die Busklemme angeschlossen sind, dürfen nur betätigt werden, wenn eine explosionsfähige Atmosphäre ausgeschlossen werden kann.

5. Für die Typen 750-606, 750-625/000-001, 750-487/003-000, 750-484 und 750-633 muss folgendes berücksichtigt werden: Die Schnittstellenstromkreise müssen begrenzt werden auf die Überspannungskategorie I/II/III (Stromkreise ohne Netzversorgung/Stromkreise mit Netzversorgung) wie in der IEC 60664-1 definiert.

13.2.4 Besondere Bedingungen für den sicheren Ex Betrieb (IEC-Ex Zertifikat IECEx TUN 12.0039 X)

1. Für den Betrieb als Gc- oder Dc-Gerät (in Zone 2 oder 22) ist das WAGO-I/O-SYSTEM 750-*** Ex i in einem Gehäuse zu errichten, das die Anforderungen an ein Gerät nach den zutreffenden Normen (siehe Kennzeichnung) IEC 60079-0, IEC 60079-11, IEC 60079-15 und IEC 60079-31 erfüllt.
Für den Betrieb als Gerät der Gruppe I, Kategorie M2, ist das Gerät in einem Gehäuse zu errichten, das einen ausreichenden Schutz gemäß IEC 60079-0 und IEC 60079-1 gewährleistet mit der Schutzart IP64.
Die Übereinstimmung mit diesen Anforderungen und dem korrekten Einbau des Gerätes in ein Gehäuse oder Schaltschrank muss durch einen ExCB bescheinigt sein.

2. Außerhalb des Gerätes sind Maßnahmen zu treffen, sodass die Bemessungsspannung durch vorübergehende Störungen um nicht mehr als 40% überschritten wird.

3. Das Anschließen und Abklemmen von nicht eigensicheren Stromkreisen ist nur zulässig für die Installation, die Wartung und die Reparatur. Das zeitliche Zusammentreffen von explosiver Atmosphäre und der Installation, der Wartung und der Reparatur muss ausgeschlossen werden.

4. Für das Gerät muss folgendes berücksichtigt werden: Die Schnittstellenstromkreise müssen begrenzt werden auf die Überspannungskategorie I/II/III (Stromkreise ohne Netzversorgung/ Stromkreise mit Netzversorgung) wie in der IEC 60664-1 definiert.
13.2.5 Besondere Bedingungen für den sicheren Betrieb nach ANSI/ISA 12.12.01

A. „Dieses Gerät ist ausschließlich für den Einsatz in Class I, Division 2, Gruppen A, B, C, D oder nicht explosionsgefährdeten Bereichen geeignet.“
B. „Dieses Gerät muss in werkzeuggesicherte Gehäuse eingebaut werden.“
C. „WARNUNG - Explosionsgefahr - Der Austausch von Komponenten kann die Eignung für Class I, Division 2 beeinträchtigen.“
D. „WARNUNG - Klemmen Sie das Gerät nur dann ab, wenn die Versorgung ausgeschaltet ist oder wenn der Bereich als nicht-explosionsgefährdet gilt“ ist in der Nähe von Steckverbindern und Sicherungshaltern anzubringen, die für Bediener zugänglich sind.
E. Falls eine Sicherung vorhanden ist, muss folgende Information vorhanden sein: „Es muss ein Schalter vorgesehen sein, der für den Einsatzort geeignet ist, in dem das Gerät installiert wird, um die Sicherung von der Versorgung zu trennen.“
F. Für Baugruppen mit EtherCAT/Ethernet-Steckverbindern gilt: „Nur für den Einsatz in LAN, nicht für den Anschluss an Fernmeldeleitungen.“
G. „WARNUNG - Die Klemme 750-642 ist nur mit dem Antennenmodul 758-910 zu benutzen.“
H. Für Feldbuskoppler/-controller und Economy-Busmodule gilt: „Die Service-Schnittstelle ist nur für einen vorübergehenden Anschluss bestimmt. Verbinden oder trennen sie diese nur, wenn der Bereich als nicht-explosionsgefährdet gilt. Das Verbinden oder Trennen in einer explosionsgefährdeten Atmosphäre könnte zu einer Explosion führen.“
I. Für Geräte mit Sicherung gilt: „WARNUNG - Geräte mit Sicherungen dürfen nicht in Stromkreise integriert werden, die einer Überlast ausgesetzt sind, z.B. Motorkreise.“
J. Für Geräte mit SD-Karte gilt: „WARNUNG - Stecken oder ziehen Sie die SD-Karte bei anliegender Spannung nur dann, wenn es sicher ist, dass der Bereich frei von zündfähigen Gasen oder Dämpfen ist.“

Information

Abbildungsverzeichnis

Abbildung 1: Feldbusknoten (Beispiel) ... 17
Abbildung 2: Beispiel einer seitlichen Gehäusebedruckung............................. 18
Abbildung 3: Beispiel einer Fertigungsnummer .. 18
Abbildung 4: Potentialeinspeisung für Feldbuskoppler/-controller (Beispiel) 21
Abbildung 5: Systemversorgung über Feldbuskoppler/-controller (li.) und über Potentialeinspeiseklemme (re.) ... 22
Abbildung 6: Systemspannung für Standard-Feldbuskoppler/-controller und ECO- Feldbuskoppler .. 23
Abbildung 7: Feldversorgung für Standard-Feldbuskoppler/-controller und erweiterte ECO-Feldbuskoppler ... 26
Abbildung 8: Potentialeinspeiseklemme mit Sicherungshalter (Beispiel 750-610) ... 28
Abbildung 9: Sicherungshalter ziehen ... 29
Abbildung 10: Sicherungshalter öffnen ... 29
Abbildung 11: Sicherung wechseln .. 29
Abbildung 12: Sicherungsklemmen für Kfz-Sicherungen, Serie 282 30
Abbildung 13: Sicherungsklemmen für Kfz-Sicherungen, Serie 2006 30
Abbildung 14: Sicherungsklemmen mit schwenkbarem Sicherungshalter, Serie 281 .. 30
Abbildung 15: Sicherungsklemmen mit schwenkbarem Sicherungshalter, Serie 2002 .. 30
Abbildung 16: Einspeisekonzept .. 31
Abbildung 17: Versorgungsbeispiel für Feldbuskoppler/-controller 32
Abbildung 18: Tragschienenkontakt (Beispiel) ... 36
Abbildung 19: Beispiel WAGO-Schirm-Anschlusssystem 38
Abbildung 20: Anwendung des WAGO-Schirm-Anschlusssystems 38
Abbildung 21: Ansicht ETHERNET TCP/IP-Feldbuscontroller 41
Abbildung 22: Geräteeinspeisung ... 43
Abbildung 23: RJ-45-Stecker ... 44
Abbildung 24: Anzeigeelemente (zwei Fertigungsvarianten) 45
Abbildung 25: Service-Schnittstelle (geschlossene und geöffnete Klappe) 47
Abbildung 26: Betriebsartenschalter (geschlossene und geöffnete Klappe der Service-Schnittstelle) ... 47
Abbildung 27: Abstände ... 59
Abbildung 28: Verriegelung Standard-Feldbuskoppler/-controller (Beispiel) 62
Abbildung 29: Busklemme einsetzen (Beispiel) .. 63
Abbildung 30: Busklemme einrasten (Beispiel) ... 63
Abbildung 31: Busklemme entfernen (Beispiel) .. 64
Abbildung 32: Datenkontakte .. 65
Abbildung 33: Beispiele für die Anordnung von Leistungskontakten 66
Abbildung 34: Leiter an CAGE CLAMP® anschließen 67
Abbildung 35: Anlauf des Feldbuscontrollers .. 69
Abbildung 36: Beispiel Eingangsprozessabbild .. 72
Abbildung 37: Beispiel Ausgangsprozessabbild .. 73
Abbildung 38: Speicherbereiche und Datenaustausch .. 76
Abbildung 39: Beispieldeklarierung für remanente Merker unter „var retain“ 78
Abbildung 40: Datenaustausch zwischen MODBUS-Master und Busklemmen .. 83
Abbildung 41: Datenaustausch zwischen SPS-Funktionalität (CPU) des PFCs und Busklemmen ... 84
Abbildung 42: Datenaustausch zwischen SPS MODBUS/TCP-Master und SPS- Funktionalität (CPU) .. 85
Abbildung 43: Adressierungsbeispiel für einen Feldbusknoten......................... 88
Abbildung 44: BootP-Tabelle .. 94
Abbildung 45: Dialogfenster des WAGO-BootP-Servers mit Meldungen 96
Abbildung 46: Beispiel für den Funktionstest eines Feldbusknotens 100
Abbildung 47: Dialogfenster Zielsystemeinstellungen 103
Abbildung 48: Dialogfenster „Kommunikationsparameter“, Erstellen einer neuen Verbindung ... 109
Abbildung 49: HTML-Seite mit Informationen zum Feldbuscontroller 114
Abbildung 50: HTML-Seite mit Informationen zum Feldbusknoten 114
Abbildung 51: Anzeigelemente (zwei Fertigungsvarianten) 115
Abbildung 52: Knotenstatus -Signalisierung der I/O-LED 118
Abbildung 53: Kodierung der Fehlermeldung ... 118
Abbildung 54: Funktionsblock zur Ermittlung des Feldbusausfalls 126
Abbildung 55: Direkter Anschluss eines Knoten mit Cross-Over-Kabel 131
Abbildung 56: Anschluss eines Knoten über ein Hub mit parallelen Kabeln 131
Abbildung 57: Stern-Topologie ... 132
Abbildung 58: Baum-Topologie .. 133
Abbildung 59: Prinzip von Shared ETHERNET .. 137
Abbildung 60: Prinzip von Switched ETHERNET 138
Abbildung 61: Aufbau der Datenstrukturen bei verschachtelten Protokollen ... 143
Abbildung 62: Anwendung von MODBUS-Funktionen für einen Feldbuskoppler/ controller .. 150
Abbildung 63: Beispiel für die seitliche Bedruckung der ATEX- und IECEx- zugelassenen Busklemmen ... 215
Abbildung 64: Textdetail - Beispielbedruckung der ATEX- und IECEx- zugelassenen Busklemmen ... 215
Abbildung 65: Beispiel für die seitliche Bedruckung der ATEX- und IECEx- zugelassenen Ex i Busklemmen .. 217
Abbildung 66: Textdetail - Beispielbedruckung der ATEX- und IECEx- zugelassenen Ex i Busklemmen .. 217
Abbildung 67: Beispiel für seitliche Bedruckung der Busklemmen gemäß NEC 500 ... 220
Abbildung 68: Textdetail - Beispielbedruckung der Busklemmen gemäß NEC 500 ... 220
Tabellenverzeichnis

Tabelle 1: Darstellungen der Zahlensysteme .. 11
Tabelle 2: Schriftkonventionen ... 11
Tabelle 3: Legende zur Abbildung „Systemversorgung über Feldbuskoppler/-
controller (li.) und über Potentialianspeiseklemme (re.)“................................... 22
Tabelle 4: Auslegung ... 23
Tabelle 5: Legende zur Abbildung „Feldversorgung für Standard-
Feldbuskoppler/-controller und erweiterte ECO-Feldbuskoppler“ 27
Tabelle 6: Potentialianspeiseklemmen ... 28
Tabelle 7: Filterklemmen für die 24V-Versorgung .. 31
Tabelle 8: Legende zur Abbildung „Versorgungsbeispiel für Feldbuskoppler/-
controller“ .. 33
Tabelle 9: WAGO-Netzgeräte (Auswahl) ... 34
Tabelle 10: WAGO-Schutzleiterklemmen .. 35
Tabelle 11: Kompatibilität ... 40
Tabelle 12: Legende zur Ansicht ETHERNET TCP/IP-Feldbuscontroller 42
Tabelle 13: Busanschluss und Steckerbelegung, RJ-45-Stecker 44
Tabelle 14: Anzeigelemente Feldbusstatus ... 45
Tabelle 15: Anzeigelemente Knotenstatus .. 45
Tabelle 16: Anzeigelemente Versorgungsstammensstatus 45
Tabelle 17: Legende zur Abbildung “Service-Schnittstelle (geschlossene und
geöffnete Klappe)” ... 47
Tabelle 18: Legende zur Abbildung „Betriebsartenschalter“ 48
Tabelle 19: Betriebsartenschalterstellungen, statische Positionen bei
PowerOn/Reset .. 48
Tabelle 20: Betriebsartenschalterstellungen, dynamische Positionen im laufenden
Betrieb .. 49
Tabelle 21: Technische Daten – Gerätedaten ... 50
Tabelle 22: Technische Daten – Systemdaten ... 50
Tabelle 23: Technische Daten – Versorgung ... 51
Tabelle 24: Technische Daten – Feldbus MODBUS/TCP 51
Tabelle 25: Technische Daten – Zubehör .. 51
Tabelle 26: Technische Daten – Verdrahtungsebene ... 51
Tabelle 27: Technische Daten – Leistungskontakte.. 51
Tabelle 28: Technische Daten – Datenkontakte .. 51
Tabelle 29: Technische Daten – klimatische Umweltbedingungen 52
Tabelle 30: Technische Daten– Mechanische Belastbarkeit gem. IEC 61131-2 . 52
Tabelle 31: WAGO-Tragschienen ... 59
Tabelle 32: Datenbreite der Busklemmen (Beispiele) .. 80
Tabelle 33: IEC-61131-3-Adressräume .. 81
Tabelle 34: Absolute Adressen .. 81
Tabelle 35: Beispieladressierung ... 82
Tabelle 36: Zuordnung digitale Ein-/Ausgänge zum Prozessdatenwort gemäß
Intel-Format .. 83
Tabelle 37: Informationen der BootP-Tabelle ... 95
Tabelle 38: ETHERNET-Bibliotheken für WAGO-I/O-PRO 106
Tabelle 39: LED-Zuordnung für die Diagnose.. 115
Tabelle 40: Diagnose des Feldbusstatus – Abhilfe im Fehlerfall 116
Tabelle 41: Diagnose des Knotenstatus – Abhilfe im Fehlerfall 117
Tabelle 42: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 1 .. 119
Tabelle 43: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 2 .. 121
Tabelle 44: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 3 .. 121
Tabelle 45: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 4 .. 122
Tabelle 46: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 5 .. 123
Tabelle 47: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 6 .. 123
Tabelle 48: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 7 .. 8
Tabelle 49: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 9 .. 124
Tabelle 50: Blinkcode-Tabelle für die I/O-LED-Signalisierung, Fehlercode 10 124
Tabelle 51: Diagnose des Versorgungsspannungsstatus – Abhilfe im Fehlerfall 125
Tabelle 52: ETHERNET-Übertragungsstandards ... 130
Tabelle 53: Legende Baum-Topologie .. 133
Tabelle 54: Gegenüberstellung der Koppelmodule für Netzwerke 134
Tabelle 55: Konfigurationsfehler bei der Übertragungsart 136
Tabelle 56: ETHERNET-Datenpaket ... 139
Tabelle 57: Physical Layer ... 141
Tabelle 58: Network Layer ... 141
Tabelle 59: Transport Layer ... 142
Tabelle 60: Application Layer .. 143
Tabelle 61: BootP-Optionen .. 146
Tabelle 62: MODBUS/TCP-Header ... 147
Tabelle 63: Grunddatentypen des MODBUS-Protokolls 148
Tabelle 64: Auflistung der in dem Feldbuscontroller realisierten MODBUS-
Funktionen ... 148
Tabelle 65: Exception-Codes ... 151
Tabelle 66: Aufbau des Request für den Funktionscode FC1 152
Tabelle 67: Aufbau der Response für den Funktionscode FC1 152
Tabelle 68: Zuordnung der Eingänge ... 152
Tabelle 69: Aufbau der Exception für den Funktionscode FC1 153
Tabelle 70: Aufbau des Request für den Funktionscode FC2 154
Tabelle 71: Aufbau der Response für den Funktionscode FC2 154
Tabelle 72: Zuordnung der Eingänge ... 154
Tabelle 73: Aufbau der Exception für den Funktionscode FC2 155
Tabelle 74: Aufbau des Request für den Funktionscode FC3 156
Tabelle 75: Aufbau der Response für den Funktionscode FC3 156
Tabelle 76: Aufbau der Exception für den Funktionscode FC3 156
Tabelle 77: Aufbau des Request für den Funktionscode FC4 157
Tabelle 78: Aufbau der Response für den Funktionscode FC4 157
Tabelle 79: Aufbau der Exception für den Funktionscode FC4 157
Tabelle 80: Aufbau des Request für den Funktionscode FC5 158
Tabelle 81: Aufbau der Response für den Funktionscode FC5 158
Tabelle 82: Aufbau der Exception für den Funktionscode FC5 158
Tabelle 83: Aufbau des Request für den Funktionscode FC6 159
Tabelle 84: Aufbau der Response für den Funktionscode FC6 159
Tabelle 85: Aufbau der Exception für den Funktionscode FC6 159
Tabelle 86: Aufbau des Request für den Funktionscode FC7 160
Tabelle 87: Aufbau der Response für den Funktionscode FC7 160
Tabelle 88: Aufbau der Exception für den Funktionscode FC7 160
Tabelle 89: Aufbau des Request für den Funktionscode FC11 161
Tabelle 90: Aufbau der Response für den Funktionscode FC11 161
Tabelle 91: Aufbau der Exception für den Funktionscode FC11 161
Tabelle 92: Aufbau des Request für den Funktionscode FC15 162
Tabelle 93: Aufbau der Response für den Funktionscode FC15 162
Tabelle 94: Aufbau der Exception für den Funktionscode FC15 163
Tabelle 95: Aufbau des Request für den Funktionscode FC16 164
Tabelle 96: Aufbau der Response für den Funktionscode FC16 164
Tabelle 97: Aufbau der Exception für den Funktionscode FC16 164
Tabelle 98: Aufbau des Request für den Funktionscode FC23 165
Tabelle 99: Aufbau der Response für den Funktionscode FC23 165
Tabelle 100: Aufbau der Exception für den Funktionscode FC23 165
Tabelle 101: Registerzugriff Lesen (mit FC3 und FC4) 167
Tabelle 102: Registerzugriff Schreiben (mit FC6 und FC16) 167
Tabelle 103: Bitzugriff Lesen (mit FC1 und FC2) .. 168
Tabelle 104: Bitzugriff Schreiben (mit FC5 und FC15) 168
Tabelle 105: MODBUS-Register .. 169
Tabelle 106: Registeradresse 0x1000 .. 171
Tabelle 107: Registeradresse 0x1001 .. 171
Tabelle 108: Registeradresse 0x1002 .. 171
Tabelle 109: Registeradresse 0x1003 .. 172
Tabelle 110: Registeradresse 0x1004 .. 172
Tabelle 111: Registeradresse 0x1005 .. 172
Tabelle 112: Registeradresse 0x1006 .. 172
Tabelle 113: Registeradresse 0x1007 .. 173
Tabelle 114: Registeradresse 0x1008 .. 173
Tabelle 115: Registeradresse 0x1009 .. 173
Tabelle 116: Registeradresse 0x100A ... 174
Tabelle 117: Watchdog starten .. 174
Tabelle 118: Registeradresse 0x1020 .. 175
Tabelle 119: Registeradresse 0x1021 .. 175
Tabelle 120: Registeradresse 0x1022 .. 176
Tabelle 121: Registeradresse 0x1023 .. 176
Tabelle 122: Registeradresse 0x1024 .. 176
Tabelle 123: Registeradresse 0x1025 .. 176
Tabelle 124: Registeradresse 0x1027 .. 176
Tabelle 125: Registeradresse 0x1028 .. 176
Tabelle 126: Registeradresse 0x1029 .. 177
Tabelle 127: Registeradresse 0x1030 .. 177
Tabelle 128: Registeradresse 0x1031 .. 177
Tabelle 129: Registeradresse 0x1040 .. 177
Tabelle 130: Registeradresse 0x2030 .. 178
Tabelle 131: Registeradresse 0x2040 .. 178
Tabelle 132: Registeradresse 0x2010 .. 179
Tabelle 133: Registeradresse 0x2011 .. 179
Tabelle 134: Registeradresse 0x2012 .. 179
Tabelle 135: Registeradresse 0x2013 .. 179
Tabelle 136: Registeradresse 0x2014 .. 179
Tabelle 137: Registeradresse 0x2020 .. 179
Tabelle 138: Registeradresse 0x2021 .. 180
Tabelle 139: Registeradresse 0x2022 .. 180
<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>Registeradresse 0x2023</td>
<td>180</td>
</tr>
<tr>
<td>141</td>
<td>Registeradresse 0x2000</td>
<td>181</td>
</tr>
<tr>
<td>142</td>
<td>Registeradresse 0x2001</td>
<td>181</td>
</tr>
<tr>
<td>143</td>
<td>Registeradresse 0x2002</td>
<td>181</td>
</tr>
<tr>
<td>144</td>
<td>Registeradresse 0x2003</td>
<td>181</td>
</tr>
<tr>
<td>145</td>
<td>Registeradresse 0x2004</td>
<td>181</td>
</tr>
<tr>
<td>146</td>
<td>Registeradresse 0x2005</td>
<td>181</td>
</tr>
<tr>
<td>147</td>
<td>Registeradresse 0x2006</td>
<td>182</td>
</tr>
<tr>
<td>148</td>
<td>Registeradresse 0x2007</td>
<td>182</td>
</tr>
<tr>
<td>149</td>
<td>Registeradresse 0x2008</td>
<td>182</td>
</tr>
<tr>
<td>150</td>
<td>Registeradresse 0x3000 bis 0x3FFF</td>
<td>182</td>
</tr>
<tr>
<td>151</td>
<td>1-Kanal-Digitaleingangsklemmen mit Diagnose</td>
<td>185</td>
</tr>
<tr>
<td>152</td>
<td>2-Kanal-Digitaleingangsklemmen</td>
<td>185</td>
</tr>
<tr>
<td>153</td>
<td>2-Kanal-Digitaleingangsklemmen mit Diagnose</td>
<td>185</td>
</tr>
<tr>
<td>154</td>
<td>2-Kanal-Digitaleingangsklemmen mit Diagnose und Ausgangsdaten</td>
<td>186</td>
</tr>
<tr>
<td>155</td>
<td>4-Kanal-Digitaleingangsklemmen</td>
<td>186</td>
</tr>
<tr>
<td>156</td>
<td>8-Kanal-Digitaleingangsklemmen</td>
<td>186</td>
</tr>
<tr>
<td>157</td>
<td>8-Kanal-Digitaleingangsklemme PTC mit Diagnose und Ausgangsdaten</td>
<td>187</td>
</tr>
<tr>
<td>158</td>
<td>16-Kanal-Digitaleingangsklemmen</td>
<td>187</td>
</tr>
<tr>
<td>159</td>
<td>1-Kanal-Digitalausgangsklemmen mit Eingangsdaten</td>
<td>188</td>
</tr>
<tr>
<td>160</td>
<td>2-Kanal-Digitalausgangsklemmen</td>
<td>188</td>
</tr>
<tr>
<td>161</td>
<td>2-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten</td>
<td>189</td>
</tr>
<tr>
<td>162</td>
<td>2-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten 75x-506</td>
<td>189</td>
</tr>
<tr>
<td>163</td>
<td>4-Kanal-Digitalausgangsklemmen</td>
<td>190</td>
</tr>
<tr>
<td>164</td>
<td>4-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten</td>
<td>190</td>
</tr>
<tr>
<td>165</td>
<td>8-Kanal-Digitalausgangsklemmen</td>
<td>191</td>
</tr>
<tr>
<td>166</td>
<td>8-Kanal-Digitalausgangsklemmen mit Diagnose und Eingangsdaten</td>
<td>191</td>
</tr>
<tr>
<td>167</td>
<td>16-Kanal-Digitalausgangsklemmen</td>
<td>191</td>
</tr>
<tr>
<td>168</td>
<td>8-Kanal-Digitalein-/ausgangsklemmen</td>
<td>192</td>
</tr>
<tr>
<td>169</td>
<td>1-Kanal-Analogeingangsklemmen</td>
<td>193</td>
</tr>
<tr>
<td>170</td>
<td>2-Kanal-Analogeingangsklemmen</td>
<td>193</td>
</tr>
<tr>
<td>171</td>
<td>4-Kanal-Analogeingangsklemmen</td>
<td>194</td>
</tr>
<tr>
<td>172</td>
<td>3-Phasen-Leistungsmessklemme</td>
<td>195</td>
</tr>
<tr>
<td>173</td>
<td>8-Kanal-Analogeingangsklemmen</td>
<td>195</td>
</tr>
<tr>
<td>174</td>
<td>2-Kanal-Analogausgangsklemmen</td>
<td>196</td>
</tr>
<tr>
<td>175</td>
<td>4-Kanal-Analogausgangsklemmen</td>
<td>196</td>
</tr>
<tr>
<td>176</td>
<td>Zählerklemmen 750-404, (und alle Varianten außer 000-005), 753-404, (und Variante 000-003)</td>
<td>197</td>
</tr>
<tr>
<td>177</td>
<td>Zählerklemmen 750-404/000-005</td>
<td>198</td>
</tr>
<tr>
<td>178</td>
<td>Zählerklemmen 750-638, 753-638</td>
<td>198</td>
</tr>
<tr>
<td>179</td>
<td>Pulsweitenklemmen 750-511, /xxx-xxx</td>
<td>199</td>
</tr>
<tr>
<td>180</td>
<td>Serielle Schnittstellen mit alternativem Datenformat</td>
<td>200</td>
</tr>
<tr>
<td>181</td>
<td>Serielle Schnittstellen mit Standard-Datenformat</td>
<td>200</td>
</tr>
<tr>
<td>182</td>
<td>Datenaustauschklemmen</td>
<td>200</td>
</tr>
</tbody>
</table>
Tabelle 183: SSI-Geber Interface Busklemmen mit alternativem Datenformat 201
Tabelle 184: Weg- und Winkelmessung 750-631/000-004, --010, -011 201
Tabelle 185: Incremental-Encoder-Interface 750-634 .. 202
Tabelle 186: Incremental-Encoder-Interface 750-637 .. 202
Tabelle 187: Digitale Impuls Schnittstelle 750-635 .. 203
Tabelle 188: Antriebssteuerung 750-636 .. 203
Tabelle 189: Steppercontroller RS 422 / 24 V / 20 mA 750-670 204
Tabelle 190: RTC-Modul 750-640 .. 205
Tabelle 191: DALI/DSI-Masterklemme 750-641 .. 205
Tabelle 192: Übersicht über das Eingangsprozessabbild im „Easy-Modus“ 207
Tabelle 193: Übersicht über das Ausgangsprozessabbild im „Easy-Modus“ 207
Tabelle 194: Funkreceiver EnOcean 750-642 .. 208
Tabelle 195: MP-Bus-Masterklemme 750-643 .. 209
Tabelle 196: Bluetooth® RF-Transceiver 750-644 .. 209
Tabelle 197: Schwingstärke/Wälzlagerüberwachung VIB I/O 750-645 210
Tabelle 198: KNX/EIB/TP1-Klemme 753-646 .. 211
Tabelle 199: AS-Interface-Masterklemme 750-655 .. 212
Tabelle 200: Systemklemmen mit Diagnose 750-610, -611 213
Tabelle 201: Binäre Platzhalterklemmen 750-622 (mit dem Verhalten einer 2 DI) 213
Tabelle 202: Beschreibung der Beispielbedruckung der ATEX- und IECEx-zugelassenen Busklemmen .. 216
Tabelle 203: Beschreibung der Beispielbedruckung der ATEX- und IECEx-zugelassenen Ex i Busklemmen .. 218
Tabelle 204: Beschreibung der Beispielbedruckung der Busklemmen gemäß NEC 500 .. 220