Customer application

Getting efficient shunting locomotives without negative impacts

German freight traffic would practically come to a standstill without diesel-powered shunting locomotives. The Voith technology company has developed a sophisticated start/stop system to reduce the high idle times that often exceed 60 percent. The special difference here: ‟OnEfficiency.StopStart“ can be retrofitted and adapted to different product series of any manufacturer. This can save fleet operators an average of 11,000 liters of fuel annually and 30 tons of CO2 – for every vehicle that is. Non-interference with safety functions and, thus, protection of the locomotive is achieved technically using relay and optocoupler modules from WAGO.

When you imagine a train running you most likely also see an overhead line in the picture in your mind. This is because anywhere you see tracks, the scene is also marked by catenary line systems – or so you would think. But it's not always that way: Only around 60 percent of the German railway system is electrified, not even including freight traffic. In particular in marshalling yards without catenary systems, the combustion engine continues to rule.

Enhancing efficiency in freight traffic – with interface electronics and automation technology from WAGO:

  • Relay and optocoupler modules ensure freedom of interference with safety functions.

     

     

  • Compact, modular solutions for non-air-conditioned control cabinets

  • Standard-compliant technology stands up to mechanical loads and the most extreme ambient temperatures.

     

Product Highlights

The Story

Interview

‟We wanted to do more than develop just a simple motor stop.“

An automatic start/stop system has long become a standard feature for cars. Now, after a development period of three years, the Voith technology company also provides this feature with its ‟OnEfficiency.StopStart“ in shunting locomotives – with value added for fleet management. The WAGO I/O System 750 XTR forms the core of this solution. Sebastian Günther, system and project engineer at Voith talks about the background, the challenges and the technical requirements for the system.

Mr. Günther, it has long become standard that the engine in cars switches off at red lights. Why haven't automatic start/stop systems established themselves yet in the railway industry?

Firstly, this is because a major portion of the diesel vehicle fleet in the German railway system is very old and at a development level preceding the 1990s. This type of technology did not exist in the company back then. Secondly, operational readiness of locomotives is the top priority in the rail system. Many operators may have concerns that an automatic start/stop feature would cause the diesel motor to continuously switch off and then switch back on again a short time later – potentially resulting in damage to the engine. It's exactly this behavior that we can prevent with our system through monitoring of numerous parameters.

You mean that there is a favorable market for ‟OnEfficiency.StopStart“?

Absolutely! Our automatic start/stop system has two important advantages: For one, it can be retrofitted, making it an interesting option for any diesel-powered shunting locomotive that has been in service for many years or decades. Secondly, ‟OnEfficiency.StopStart“ can be used with the systems and products of any manufacturer.

What requirements does your automatic start/stop system make on automation systems?

There are in fact a wide range of demands – and challenging ones at that. Besides the lack of interference or adverse impacts that we achieve using WAGO relay and optocoupler modules, an I/O system must above all satisfy all the applicable railway standards, otherwise it cannot be used. This requirement alone narrowed our selection options considerably. In addition, the control cabinet we use is small and is not air-conditioned; as a result, the automation system must be very compact and withstand large temperature fluctuations. It was also important to us that the system have a modular design to enable our solution to be easily adapted to different types of locomotives. We decided relatively quickly on the WAGO I/O System 750 XTR.

And what tasks does the WAGO I/O System 750 XTR ultimately perform?

In a nutshell: the entire control system for the automatic start/stop system. All analog and digital signals entering and leaving our control cabinet are routed through the modules of the WAGO I/O System 750 XTR. This includes motor speed at 0 … 10 V, brake pressure and cooling water temperature at 4 … 20 mA. Data is processed in the CANopen 750-838 controller. In CODESYS V2.3 we have mapped all the necessary stop conditions for this quite conveniently using function blocks.

You spent around three years developing and optimizing ‟OnEfficiency.StopStart“. What were some special challenges you faced?

We did not want to develop just a simple motor stop, we could have done that a lot quicker. Instead, we wanted to offer real value added that goes beyond the actual start/stop function. On request, our system also generates specifically prepared savings reports based on the operating data that is collected. Fleet operators not only see in this report exactly when the motor is switched off and switched back on again, for example, but are also provided with very detailed information about why this occurred – or why it didn't occur. On the one hand this enables idle times to be continuously optimized and, on the other, allows the technical conditions of the vehicle to be monitored at the push of a button. The WAGO I/O System 750 XTR also forms the core of this solution.

Mr. Günther, thank you for this interview.

Video

Your Railway Industry Contacts

Industrial Internet of Things